Data Mining and Knowledge Discovery with Evolutionary Algorithms

Data Mining and Knowledge Discovery with Evolutionary Algorithms
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9783662049235
ISBN-13 : 3662049236
Rating : 4/5 (35 Downloads)

Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas

This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Pattern Mining with Evolutionary Algorithms

Pattern Mining with Evolutionary Algorithms
Author :
Publisher : Springer
Total Pages : 199
Release :
ISBN-10 : 9783319338583
ISBN-13 : 3319338587
Rating : 4/5 (83 Downloads)

Synopsis Pattern Mining with Evolutionary Algorithms by : Sebastián Ventura

This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.

Automating the Design of Data Mining Algorithms

Automating the Design of Data Mining Algorithms
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642261256
ISBN-13 : 9783642261251
Rating : 4/5 (56 Downloads)

Synopsis Automating the Design of Data Mining Algorithms by : Gisele L. Pappa

Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Handbook of Research on Applications and Implementations of Machine Learning Techniques
Author :
Publisher : IGI Global, Engineering Science Reference
Total Pages : 0
Release :
ISBN-10 : 1522599029
ISBN-13 : 9781522599029
Rating : 4/5 (29 Downloads)

Synopsis Handbook of Research on Applications and Implementations of Machine Learning Techniques by : Sathiyamoorthi Velayutham

"This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
Author :
Publisher : Academic Press
Total Pages : 554
Release :
ISBN-10 : 9780121942755
ISBN-13 : 0121942759
Rating : 4/5 (55 Downloads)

Synopsis Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration by : Earl Cox

Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
Author :
Publisher : Springer Science & Business Media
Total Pages : 311
Release :
ISBN-10 : 9783540717829
ISBN-13 : 354071782X
Rating : 4/5 (29 Downloads)

Synopsis Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics by : Elena Marchiori

This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain, April 2007. Coverage brings together experts in computer science with experts in bioinformatics and the biological sciences. It presents contributions on fundamental and theoretical issues along with papers dealing with different applications areas.

Advances in Evolutionary Computing

Advances in Evolutionary Computing
Author :
Publisher : Springer Science & Business Media
Total Pages : 1001
Release :
ISBN-10 : 9783642189654
ISBN-13 : 3642189652
Rating : 4/5 (54 Downloads)

Synopsis Advances in Evolutionary Computing by : Ashish Ghosh

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Periodic Pattern Mining

Periodic Pattern Mining
Author :
Publisher : Springer Nature
Total Pages : 263
Release :
ISBN-10 : 9789811639647
ISBN-13 : 9811639647
Rating : 4/5 (47 Downloads)

Synopsis Periodic Pattern Mining by : R. Uday Kiran

This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed. The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques. The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.

Introduction to Algorithms for Data Mining and Machine Learning

Introduction to Algorithms for Data Mining and Machine Learning
Author :
Publisher : Academic Press
Total Pages : 190
Release :
ISBN-10 : 9780128172179
ISBN-13 : 0128172177
Rating : 4/5 (79 Downloads)

Synopsis Introduction to Algorithms for Data Mining and Machine Learning by : Xin-She Yang

Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Genetic and Evolutionary Computation--GECCO 2003

Genetic and Evolutionary Computation--GECCO 2003
Author :
Publisher : Springer Science & Business Media
Total Pages : 1294
Release :
ISBN-10 : 9783540406020
ISBN-13 : 3540406026
Rating : 4/5 (20 Downloads)

Synopsis Genetic and Evolutionary Computation--GECCO 2003 by : Erick Cantú-Paz

The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionaty Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based softare engineering.