Partial Integral Operators and Integro-Differential Equations

Partial Integral Operators and Integro-Differential Equations
Author :
Publisher : CRC Press
Total Pages : 582
Release :
ISBN-10 : 0824703960
ISBN-13 : 9780824703967
Rating : 4/5 (60 Downloads)

Synopsis Partial Integral Operators and Integro-Differential Equations by : Jurgen Appell

A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.

Finite Element Methods for Integrodifferential Equations

Finite Element Methods for Integrodifferential Equations
Author :
Publisher : World Scientific
Total Pages : 294
Release :
ISBN-10 : 9810232632
ISBN-13 : 9789810232634
Rating : 4/5 (32 Downloads)

Synopsis Finite Element Methods for Integrodifferential Equations by : Chuanmiao Chen

Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.

Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 639
Release :
ISBN-10 : 9783642214493
ISBN-13 : 3642214495
Rating : 4/5 (93 Downloads)

Synopsis Linear and Nonlinear Integral Equations by : Abdul-Majid Wazwaz

Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Analysis and Partial Differential Equations: Perspectives from Developing Countries

Analysis and Partial Differential Equations: Perspectives from Developing Countries
Author :
Publisher : Springer
Total Pages : 280
Release :
ISBN-10 : 9783030056575
ISBN-13 : 3030056570
Rating : 4/5 (75 Downloads)

Synopsis Analysis and Partial Differential Equations: Perspectives from Developing Countries by : Julio Delgado

This volume presents current trends in analysis and partial differential equations from researchers in developing countries. The fruit of the project 'Analysis in Developing Countries', whose aim was to bring together researchers from around the world, the volume also includes some contributions from researchers from developed countries. Focusing on topics in analysis related to partial differential equations, this volume contains selected contributions from the activities of the project at Imperial College London, namely the conference on Analysis and Partial Differential Equations held in September 2016 and the subsequent Official Development Assistance Week held in November 2016. Topics represented include Fourier analysis, pseudo-differential operators, integral equations, as well as related topics from numerical analysis and bifurcation theory, and the countries represented range from Burkina Faso and Ghana to Armenia, Kyrgyzstan and Tajikistan, including contributions from Brazil, Colombia and Cuba, as well as India and China. Suitable for postgraduate students and beyond, this volume offers the reader a broader, global perspective of contemporary research in analysis.

Multidimensional Integral Equations and Inequalities

Multidimensional Integral Equations and Inequalities
Author :
Publisher : Springer Science & Business Media
Total Pages : 248
Release :
ISBN-10 : 9789491216176
ISBN-13 : 9491216171
Rating : 4/5 (76 Downloads)

Synopsis Multidimensional Integral Equations and Inequalities by : B.G. Pachpatte

Since from more than a century, the study of various types of integral equations and inequalities has been focus of great attention by many researchers, interested both in theory and its applications. In particular, there exists a very rich literature related to the integral equations and inequalities and their applications. The present monograph is an attempt to organize recent progress related to the Multidimensional integral equations and inequalities, which we hope will widen the scope of their new applications. The field to be covered is extremely wide and it is nearly impossible to treat all of them here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with reasonable background in real analysis and acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be an invaluable reading for mathematicians, physicists and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.

Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9783642846595
ISBN-13 : 3642846599
Rating : 4/5 (95 Downloads)

Synopsis Homogenization of Differential Operators and Integral Functionals by : V.V. Jikov

It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.

Introduction to the General Theory of Singular Perturbations

Introduction to the General Theory of Singular Perturbations
Author :
Publisher : American Mathematical Soc.
Total Pages : 402
Release :
ISBN-10 : 0821897411
ISBN-13 : 9780821897416
Rating : 4/5 (11 Downloads)

Synopsis Introduction to the General Theory of Singular Perturbations by : S. A. Lomov

This book is aimed at researchers and students in physics, mathematics, and engineering. It contains the first systematic presentation of a general approach to the integration of singularly perturbed differential equations describing nonuniform transitions, such as the occurrence of a boundary layer, discontinuities, boundary effects and so on. The method of regularization of singular perturbations presented here can be applied to the asymptotic integration of systems of ordinary and partial differential equations.

Kernel Determination Problems in Hyperbolic Integro-Differential Equations

Kernel Determination Problems in Hyperbolic Integro-Differential Equations
Author :
Publisher : Springer Nature
Total Pages : 390
Release :
ISBN-10 : 9789819922604
ISBN-13 : 9819922607
Rating : 4/5 (04 Downloads)

Synopsis Kernel Determination Problems in Hyperbolic Integro-Differential Equations by : Durdimurod K. Durdiev

This book studies the construction methods for solving one-dimensional and multidimensional inverse dynamical problems for hyperbolic equations with memory. The theorems of uniqueness, stability and existence of solutions of these inverse problems are obtained. This book discusses the processes, by using generalized solutions, the spread of elastic or electromagnetic waves arising from sources of the type of pulsed directional “impacts” or “explosions”. This book presents new results in the study of local and global solvability of kernel determination problems for a half-space. It describes the problems of reconstructing the coefficients of differential equations and the convolution kernel of hyperbolic integro-differential equations by the method of Dirichlet-to-Neumann. The book will be useful for researchers and students specializing in the field of inverse problems of mathematical physics.

Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9789401599863
ISBN-13 : 9401599866
Rating : 4/5 (63 Downloads)

Synopsis Methods in Nonlinear Integral Equations by : R Precup

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.