Metalorganic Vapor Phase Epitaxy (MOVPE)

Metalorganic Vapor Phase Epitaxy (MOVPE)
Author :
Publisher : John Wiley & Sons
Total Pages : 586
Release :
ISBN-10 : 9781119313045
ISBN-13 : 111931304X
Rating : 4/5 (45 Downloads)

Synopsis Metalorganic Vapor Phase Epitaxy (MOVPE) by : Stuart Irvine

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Organometallic Vapor-Phase Epitaxy

Organometallic Vapor-Phase Epitaxy
Author :
Publisher : Elsevier
Total Pages : 417
Release :
ISBN-10 : 9780323139175
ISBN-13 : 0323139175
Rating : 4/5 (75 Downloads)

Synopsis Organometallic Vapor-Phase Epitaxy by : Gerald B. Stringfellow

Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the special structures required for device applications. In addition, a comprehensive summary detailing the OMVPE results observed to date in a wide range of III-V and II-VI semiconductors is provided. This includes a comparison of results obtained through the use of other epitaxial techniques such as molecular beam epitaxy (MBE), liquid-phase epitaxy (LPE), and vapor phase epitaxy using halide transport.

Metalorganic Vapor Phase Epitaxy (MOVPE)

Metalorganic Vapor Phase Epitaxy (MOVPE)
Author :
Publisher : John Wiley & Sons
Total Pages : 582
Release :
ISBN-10 : 9781119313014
ISBN-13 : 1119313015
Rating : 4/5 (14 Downloads)

Synopsis Metalorganic Vapor Phase Epitaxy (MOVPE) by : Stuart Irvine

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Compound Semiconductor Devices

Compound Semiconductor Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 188
Release :
ISBN-10 : 9783527611775
ISBN-13 : 3527611770
Rating : 4/5 (75 Downloads)

Synopsis Compound Semiconductor Devices by : Kenneth A. Jackson

Compound Semiconductor Devices provides a comprehensive insight into today ́s standard technologies, covering the vast range of semiconductor products and their possible applications. The materials covered runs from the basics of conventional semiconductor technology through standard,power and opto semiconductors, to highly complex memories and microcontrollers and the special devices and modules for smartcards, automotive electronics, consumer electronics and telecommunications. Some chapters are devoted to the production of semiconductor components and their use in electronic systems as well as to quality management. The book offers students and users a unique overview of technology, architecture and areas of application of semiconductor products.

Epitaxial Growth of P-type Doped III-V Nitride Semiconductor on Sapphire Substrate Using Remote Plasma Metal Organic Chemical Vapor Deposition

Epitaxial Growth of P-type Doped III-V Nitride Semiconductor on Sapphire Substrate Using Remote Plasma Metal Organic Chemical Vapor Deposition
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1280532400
ISBN-13 :
Rating : 4/5 (00 Downloads)

Synopsis Epitaxial Growth of P-type Doped III-V Nitride Semiconductor on Sapphire Substrate Using Remote Plasma Metal Organic Chemical Vapor Deposition by : Chandana Rangaswamy

Lakehead University Remote Plasma-enhanced Metal Organic Chemical Vapour Deposition (RP-MOCVD) is used to grow III-V nitride semiconductor material. RP-MOCVD use nitrogen plasma as a nitrogen source along with group III precursor for epitaxial growth of III-V nitride. Using plasma for the growth process is advantages over conventional MOCVD as it uses ammonia for nitrogen source. As ammonia dissociate at higher temperature, restrict the growth for certain material thus limiting the selection of substrate for the growth process. RP-MOCVD is efficient as it operates at low temperature and uses plasma for growth. In this work p-type acceptor doped GaN epitaxial growth using RP-MOCVD is discussed. Mg is used as a dopant element to obtain p-type in GaN. Achieving p-type doping always remains a difficult issue for electronic and optical devices. Mg doped GaN has hole concentration around 1x1018 cm-3 due to saturation in p-type conductivity when Mg concentration is increased. Polarity of GaN matter during the growth, with Ga-polar GaN the hole concentration is higher compared with N-polar GaN. Temperature is one of the main factor in RP-MOCVD determining p-type conductivity in GaN film which provide room for compensation effect, solubility issue and dopant incorporation. The growth result obtained from RP-MOCVD are analysed using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscope (AFM), Hall effect, X-ray photoelectron spectroscopy (XPS).

Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology
Author :
Publisher : Newnes
Total Pages : 3572
Release :
ISBN-10 : 9780080932286
ISBN-13 : 0080932282
Rating : 4/5 (86 Downloads)

Synopsis Comprehensive Semiconductor Science and Technology by :

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts