Overcoming Limitations of Iontronic Delivery Devices

Overcoming Limitations of Iontronic Delivery Devices
Author :
Publisher : Linköping University Electronic Press
Total Pages : 76
Release :
ISBN-10 : 9789179298937
ISBN-13 : 9179298931
Rating : 4/5 (37 Downloads)

Synopsis Overcoming Limitations of Iontronic Delivery Devices by : Maria Seitanidou

Organic electronic devices are considered as one of the best candidates to replace conventional inorganic electronic devices due to their electronic conductive functionality, low-cost production techniques, the ability to tune their optical and electronic properties using organic chemistry, and their mechanical flexibility. Moreover, these systems are ideal for bioelectronic applications due to their softness, biocompatibility, and most importantly, their electronic and ionic transport. Indeed, these materials are compatible with biological tissues and cells improving the signal transduction between electronic devices and electrically excitable cells. As ions serve as one of the primary signal carriers of cells, they can selectively tune a cell’s activity; therefore, an improved interface between electronics and biological systems can offer several advantages in healthcare, e.g. the development of efficient drug delivery devices. The main focus of this thesis is the development of electronic delivery devices. Electrophoretic delivery devices called organic electronic ion pumps (OEIPs) are used to electronically control the delivery of small ions, neurotransmitters, and drugs with high spatiotemporal resolution. This work elucidates the ion transport processes and phenomena that happen in the ion exchange membranes during ion delivery and clarifies which parameters are crucial for the ion transport efficiency of the OEIPs. This thesis shows a systematic investigation of these parameters and indicates new methods and OEIP designs to overcome these challenges. Two novel OEIP designs are developed and introduced in this thesis to improve the local ion transport while limiting side effects. OEIPs based on palladium proton trap contacts can improve the membrane permselectivity and optimize the delivery of γ-aminobutyric acid (GABA) neurotransmitters at low pH while preventing any undesired pH changes from proton transport in the biological systems. And OEIPs based on glass capillary fibers are developed to overcome the limitations of devices on planar substrates, related to more complex and larger biologically relevant ion delivery with low mobility for implantable applications. This design can optimize the transport of ions and drugs such as salicylic acid (SA) at low concentrations and at relatively much higher rates, thereby addressing a wider range of biomedically relevant applications and needs.

Conducting Polymer-Based Nanocomposites

Conducting Polymer-Based Nanocomposites
Author :
Publisher : Elsevier
Total Pages : 308
Release :
ISBN-10 : 9780128224649
ISBN-13 : 0128224649
Rating : 4/5 (49 Downloads)

Synopsis Conducting Polymer-Based Nanocomposites by : Ayesha Kausar

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. - Integrates the fundamentals of conducting polymers and a range of multifunctional applications - Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials - Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers - Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Organic Bioelectronics for Neurotransmitter Release at the Speed of Life

Organic Bioelectronics for Neurotransmitter Release at the Speed of Life
Author :
Publisher : Linköping University Electronic Press
Total Pages : 77
Release :
ISBN-10 : 9789179297558
ISBN-13 : 9179297552
Rating : 4/5 (58 Downloads)

Synopsis Organic Bioelectronics for Neurotransmitter Release at the Speed of Life by : Theresia Arbring Sjöström

The signaling dynamics in neuronal networks includes processes ranging from lifelong neuromodulation to direct synaptic neurotransmission. In chemical synapses, the time delay it takes to pass a signal from one neuron to the next lasts for less than a millisecond. At the post-synaptic neuron, further signaling is either up- or down-regulated, dependent on the specific neurotransmitter and receptor. While this up- and down-regulation of signals usually runs perfectly well and enables complex performance, even a minor dysfunction of this signaling system can cause major complications, in the shape of neurological disorders. The field of organic bioelectronics has the ability to interface neurons with high spatiotemporal recording and stimulation techniques. Local chemical stimulation, i.e. local release of neurotransmitters, enables the possibility of artificially altering the chemical environment in dysfunctional signaling pathways to regain or restore neural function. To successfully interface the biological nervous system with electronics, a range of demands must be met. Organic bioelectronic techniques and materials are capable of reaching the demands on the biological as well as the electronic side of the interface. These demands span from high performance biocompatible materials, to miniaturized and specific device architectures, and high dose control on demand within milliseconds. The content of this thesis is a continuation of the development of organic bioelectronic devices for neurotransmitter delivery. Organic materials are utilized to electrically control the dose of charged neurotransmitters by translating electric charge into controlled artificial release. The first part of the thesis, Papers 1 and 2, includes further development of the resistor-type release device called the organic electronic ion pump. This part includes material evaluation, microfluidic incorporation, and device design considerations. The aim for the second part of this thesis, Papers 3 and 4, is to enhance temporal performance, i.e. reduce the delay between electrical signal and neurotransmitter delivery to corresponding delay in biological neural signaling, while retaining tight dosage control. Diffusion of neurotransmitters between nerve cells is a slow process, but since it is restricted to short distances, the total time delay is short. In our organic bioelectronic devices, several orders of magnitude in speed can be gained by switching from lateral to vertical delivery geometries. This is realized by two different types of vertical diodes combined with a lateral preload and waste configuration. The vertical diode assembly was further expanded with a control electrode that enables individual addressing in each of several combined release sites. These integrated circuits allow for release of neurotransmitters with high on/off release ratios, approaching delivery times on par with biological neurotransmission.

Organic Electronics From Synthesis To Applications

Organic Electronics From Synthesis To Applications
Author :
Publisher : Frontiers Media SA
Total Pages : 143
Release :
ISBN-10 : 9782889634538
ISBN-13 : 2889634531
Rating : 4/5 (38 Downloads)

Synopsis Organic Electronics From Synthesis To Applications by : John George Hardy

Organic electronics is one of the most exciting emerging areas of materials science. It is a highly interdisciplinary research area involving scientists and engineers who develop organic molecules with interesting properties for a variety of applications in technical industries (e.g. circuitry, energy harvesting/storage, etc.) and medical applications (e.g. bioelectronics for sensors, tissue scaffolds for tissue engineering, etc.). This Research Topic collects articles that report advances in chemistry (e.g. design and synthesis of molecules with various molecular weights and structures); physical chemistry and chemical physics, and computational/theoretical research (e.g. to push the boundaries of our understanding); chemical engineering (e.g. design, prototyping and manufacturing devices); materials scientists and technologists to explore different markets for the technologies employing such materials, the organic bioelectronics field and green/sustainable electronics.

Iontronics

Iontronics
Author :
Publisher : CRC Press
Total Pages : 238
Release :
ISBN-10 : 9781439806890
ISBN-13 : 1439806896
Rating : 4/5 (90 Downloads)

Synopsis Iontronics by : Janelle Leger

With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries made on the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films.

Wearable Bioelectronics

Wearable Bioelectronics
Author :
Publisher : Elsevier
Total Pages : 240
Release :
ISBN-10 : 9780081024089
ISBN-13 : 0081024088
Rating : 4/5 (89 Downloads)

Synopsis Wearable Bioelectronics by : Anthony P.F. Turner

Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. - Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare - Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin - Examines and discusses the future of wearable bioelectronics - Addresses the wearable electronics market as a development of the healthcare industry

Ion-Exchange Membrane Separation Processes

Ion-Exchange Membrane Separation Processes
Author :
Publisher : Elsevier
Total Pages : 361
Release :
ISBN-10 : 9780080509402
ISBN-13 : 0080509401
Rating : 4/5 (02 Downloads)

Synopsis Ion-Exchange Membrane Separation Processes by : H Strathmann

Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. - First work on the principles and applications of electrodialysis and related separation processes - Presently no other comprehensive work that can serve as both reference work and text book is available - Book is suited for teaching students and as source for detailed information

Nanoporous Alumina

Nanoporous Alumina
Author :
Publisher : Springer
Total Pages : 371
Release :
ISBN-10 : 9783319203348
ISBN-13 : 3319203347
Rating : 4/5 (48 Downloads)

Synopsis Nanoporous Alumina by : Dusan Losic

This book gives detailed information about the fabrication, properties and applications of nanoporous alumina. Nanoporous anodic alumina prepared by low-cost, simple and scalable electrochemical anodization process due to its unique structure and properties have attracted several thousand publications across many disciplines including nanotechnology, materials science, engineering, optics, electronics and medicine. The book incorporates several themes starting from the understanding fundamental principles of the formation nanopores and theoretical models of the pore growth. The book then focuses on describing soft and hard modification techniques for surface and structural modification of pore structures to tailor specific sensing, transport and optical properties of nano porous alumina required for diverse applications. These broad applications including optical biosensing, electrochemical DNA biosensing, molecular separation, optofluidics and drug delivery are reviewed in separated book chapters. The book appeals to researchers, industry professionals and high-level students.

Ionic Transport Processes

Ionic Transport Processes
Author :
Publisher : OUP Oxford
Total Pages : 305
Release :
ISBN-10 : 9780191559945
ISBN-13 : 0191559946
Rating : 4/5 (45 Downloads)

Synopsis Ionic Transport Processes by : Kyösti Kontturi

Modelling of heterogeneous processes, such as electrochemical reactions, extraction or ion-exchange, usually requires solving the transport problem associated to the process. Since the processes at the phase boundary are described by scalar quantities and transport quantities are vectors or tensors, coupling of them can take place only via conservation of mass, charge or momentum. In this book, transport of ionic species is addressed in a versatile manner, emphasizing the mutual coupling of fluxes in particular. Treatment is based on the formalism of irreversible thermodynamics, i.e. on linear (ionic) phenomenological equations, from which the most frequently used Nernst-Planck equation is derived. Limitations and assumptions made are thoroughly discussed. The Nernst-Planck equation is applied to selected problems at the electrodes and in membranes. Mathematical derivations are presented in detail so that the reader can learn the methodology of solving transport problems. Each chapter contains a large number of exercises, some of them more demanding than others.

PEDOT

PEDOT
Author :
Publisher : CRC Press
Total Pages : 380
Release :
ISBN-10 : 9781420069129
ISBN-13 : 1420069128
Rating : 4/5 (29 Downloads)

Synopsis PEDOT by : Andreas Elschner

While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.