Outliers In Statistical Data
Download Outliers In Statistical Data full books in PDF, epub, and Kindle. Read online free Outliers In Statistical Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Vic Barnett |
Publisher |
: John Wiley & Sons |
Total Pages |
: 616 |
Release |
: 1994-05-09 |
ISBN-10 |
: UCSD:31822016471997 |
ISBN-13 |
: |
Rating |
: 4/5 (97 Downloads) |
Synopsis Outliers in Statistical Data by : Vic Barnett
Every essential area is thoroughly updated to reflect the latest state of knowledge. All the topics are fully revised and extended, and additional topics and new emphases are presented.
Author |
: D. Hawkins |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 194 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9789401539944 |
ISBN-13 |
: 9401539944 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Identification of Outliers by : D. Hawkins
The problem of outliers is one of the oldest in statistics, and during the last century and a half interest in it has waxed and waned several times. Currently it is once again an active research area after some years of relative neglect, and recent work has solved a number of old problems in outlier theory, and identified new ones. The major results are, however, scattered amongst many journal articles, and for some time there has been a clear need to bring them together in one place. That was the original intention of this monograph: but during execution it became clear that the existing theory of outliers was deficient in several areas, and so the monograph also contains a number of new results and conjectures. In view of the enormous volume ofliterature on the outlier problem and its cousins, no attempt has been made to make the coverage exhaustive. The material is concerned almost entirely with the use of outlier tests that are known (or may reasonably be expected) to be optimal in some way. Such topics as robust estimation are largely ignored, being covered more adequately in other sources. The numerous ad hoc statistics proposed in the early work on the grounds of intuitive appeal or computational simplicity also are not discussed in any detail.
Author |
: Charu C. Aggarwal |
Publisher |
: Springer |
Total Pages |
: 481 |
Release |
: 2016-12-10 |
ISBN-10 |
: 9783319475783 |
ISBN-13 |
: 3319475789 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Outlier Analysis by : Charu C. Aggarwal
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Author |
: MIT Critical Data |
Publisher |
: Springer |
Total Pages |
: 435 |
Release |
: 2016-09-09 |
ISBN-10 |
: 9783319437422 |
ISBN-13 |
: 3319437429 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Secondary Analysis of Electronic Health Records by : MIT Critical Data
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Author |
: Barbara Illowsky |
Publisher |
: |
Total Pages |
: 2106 |
Release |
: 2023-12-13 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Introductory Statistics 2e by : Barbara Illowsky
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Author |
: Paweł D. Domański |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 294 |
Release |
: 2022-03-07 |
ISBN-10 |
: 9783110729139 |
ISBN-13 |
: 311072913X |
Rating |
: 4/5 (39 Downloads) |
Synopsis Outliers in Control Engineering by : Paweł D. Domański
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are interested in their detection and removal. However, there exists the second kind of outliers. Quite often strange looking data observations are not artificial data occurrences. They may be just representatives of the underlying generation mechanism being inseparable internal part of the process (endogenous outliers). In such a case they are not wrong and should be treated with cautiousness, as they may include important information about the dynamic nature of the process. As such they cannot be neglected nor simply removed. The Outlier should be detected, labelled and suitably treated. These activities cannot be performed without proper analytical tools and modeling approaches. There are dozens of methods proposed by scientists, starting from Gaussian-based statistical scoring up to data mining artificial intelligence tools. The research presented in this book presents novel approach incorporating non-Gaussian statistical tools and fractional calculus approach revealing new data analytics applied to this important and challenging task. The proposed book includes a collection of contributions addressing different yet cohesive subjects, like dynamic modelling, classical control, advanced control, fractional calculus, statistical analytics focused on an ultimate goal: robust and outlier-proof analysis. All studied problems show that outliers play an important role and classical methods, in which outlier are not taken into account, do not give good results. Applications from different engineering areas are considered such as semiconductor process control and monitoring, MIMO peltier temperature control and health monitoring, networked control systems, and etc.
Author |
: Peter J. Rousseeuw |
Publisher |
: John Wiley & Sons |
Total Pages |
: 329 |
Release |
: 2005-02-25 |
ISBN-10 |
: 9780471725374 |
ISBN-13 |
: 0471725374 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Robust Regression and Outlier Detection by : Peter J. Rousseeuw
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association
Author |
: Boris Iglewicz |
Publisher |
: Quality Press |
Total Pages |
: 99 |
Release |
: 1993-01-08 |
ISBN-10 |
: 9780873892605 |
ISBN-13 |
: 0873892607 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Volume 16: How to Detect and Handle Outliers by : Boris Iglewicz
Outliers are the key focus of this book. The authors concentrate on the practical aspects of dealing with outliers in the forms of data that arise most often in applications: single and multiple samples, linear regression, and factorial experiments. Available only as an E-Book.
Author |
: Jason W. Osborne |
Publisher |
: SAGE |
Total Pages |
: 609 |
Release |
: 2008 |
ISBN-10 |
: 9781412940658 |
ISBN-13 |
: 1412940656 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Best Practices in Quantitative Methods by : Jason W. Osborne
The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
Author |
: Jason W. Osborne |
Publisher |
: SAGE |
Total Pages |
: 297 |
Release |
: 2013 |
ISBN-10 |
: 9781412988018 |
ISBN-13 |
: 1412988012 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Best Practices in Data Cleaning by : Jason W. Osborne
Many researchers jump straight from data collection to data analysis without realizing how analyses and hypothesis tests can go profoundly wrong without clean data. This book provides a clear, step-by-step process of examining and cleaning data in order to decrease error rates and increase both the power and replicability of results. Jason W. Osborne, author of Best Practices in Quantitative Methods (SAGE, 2008) provides easily-implemented suggestions that are research-based and will motivate change in practice by empirically demonstrating, for each topic, the benefits of following best practices and the potential consequences of not following these guidelines. If your goal is to do the best research you can do, draw conclusions that are most likely to be accurate representations of the population(s) you wish to speak about, and report results that are most likely to be replicated by other researchers, then this basic guidebook will be indispensible.