Oscillations in Neural Systems

Oscillations in Neural Systems
Author :
Publisher : Psychology Press
Total Pages : 454
Release :
ISBN-10 : 9781135691905
ISBN-13 : 1135691908
Rating : 4/5 (05 Downloads)

Synopsis Oscillations in Neural Systems by : Daniel S. Levine

Written for those interested in designing machines to perform intelligent functions & those interested in studying how these functions are performed by living organisms,this bk dicusses the mathematical structure & functional significance of neural oscil

Dendrites

Dendrites
Author :
Publisher : Oxford University Press, USA
Total Pages : 578
Release :
ISBN-10 : 9780198566564
ISBN-13 : 0198566565
Rating : 4/5 (64 Downloads)

Synopsis Dendrites by : Greg Stuart

Dendrites form the major receiving part of neurons. This text presents a survey of knowledge on dendrites, from their morphology and development, through to their electrical chemical, and computational properties.

Multimodal Oscillation-based Connectivity Theory

Multimodal Oscillation-based Connectivity Theory
Author :
Publisher : Springer
Total Pages : 152
Release :
ISBN-10 : 9783319322650
ISBN-13 : 3319322656
Rating : 4/5 (50 Downloads)

Synopsis Multimodal Oscillation-based Connectivity Theory by : Satu Palva

Systems-level neuronal mechanisms that coordinate the temporally, anatomically, and functionally distributed neuronal activity into coherent cognitive operations in the human brain have remained poorly understood. In humans, neuronal oscillations and synchronization can be recorded non-invasively with electro- and magnetoencephalography (EEG and MEG) that have excellent temporal resolution and an adequate spatial resolution when combined with source-reconstruction methods. In this book, leading authors in the field describe how recent methodological advances have paved the way to several major breakthroughs in the observations of large-scale synchrony from human non-invasive MEG data. This volume also presents the caveats influencing analyses of synchronization. These include the non-homogeneous sensitivity of MEG to superficial cortical sources, and, most importantly, the multitude of consequences of linear mixing. Linear mixing is an immense confounder in the sensor-level analyses of synchronization, but is also present at the source level. Approaches that can be used to avoid or compensate for these issues are then discussed. Thereafter, several authors take up a number of the functional roles that large-scale synchronization has in cognition. The authors assess how the spatio–temporal and –spectral organization and strength of both local and large-scale synchronized networks are associated with conscious sensory perception, visual working memory functions, and attention. These chapters summarize several lines of research showing how the strength of local and inter-areal oscillations in both cortical and subcortical brain structures is correlated with cognitive functions. Together these data suggest that synchronized neuronal oscillations may be a systems-level neuronal mechanism underlying the coordination of distributed processing in human cognition. In line with this argument, other authors go on to describe how oscillations and synchronization are altered in clinical populations, complementing the data presented on healthy subjects. Importantly, this book includes chapters from authors using many different approaches to the analyses of neuronal oscillations, ranging from local oscillatory activities to the usage of graph theoretical tools in the analyses of synchronization. In this way the present volume provides a comprehensive view on the analyses and functional significance of neuronal oscillations in humans. This book is aimed at doctoral and post-doctoral students as well as research scientists in the fields of cognitive neuroscience, psychology, medicine, and neurosciences.

Oscillations in Neural Systems

Oscillations in Neural Systems
Author :
Publisher : Psychology Press
Total Pages : 529
Release :
ISBN-10 : 9781135691899
ISBN-13 : 1135691894
Rating : 4/5 (99 Downloads)

Synopsis Oscillations in Neural Systems by : Daniel S. Levine

This book is the fourth in a series based on conferences sponsored by the Metroplex Institute for Neural Dynamics (MIND), an interdisciplinary organization of Dallas-Fort Worth area neural network professionals in both academia and industry. This topic was chosen as the focus for this special issue because of the increasing interest by neuroscientists and psychologists in both rhythmic and chaotic activity patterns observed in the nervous system. Neither the mathematical structure of neural oscillations nor their functional significance is precisely understood. There are a great many open problems in both the structure and function of neural oscillations, whether rhythmic, chaotic, or a combination of the two, and many of these problems are dealt with in the chapters of this book.

Jasper's Basic Mechanisms of the Epilepsies

Jasper's Basic Mechanisms of the Epilepsies
Author :
Publisher : OUP USA
Total Pages : 1258
Release :
ISBN-10 : 9780199746545
ISBN-13 : 0199746540
Rating : 4/5 (45 Downloads)

Synopsis Jasper's Basic Mechanisms of the Epilepsies by : Jeffrey Noebels

Jasper's Basic Mechanisms, Fourth Edition, is the newest most ambitious and now clinically relevant publishing project to build on the four-decade legacy of the Jasper's series. In keeping with the original goal of searching for "a better understanding of the epilepsies and rational methods of prevention and treatment.", the book represents an encyclopedic compendium neurobiological mechanisms of seizures, epileptogenesis, epilepsy genetics and comordid conditions. Of practical importance to the clinician, and new to this edition are disease mechanisms of genetic epilepsies and therapeutic approaches, ranging from novel antiepileptic drug targets to cell and gene therapies.

Brain Oscillations in Human Communication

Brain Oscillations in Human Communication
Author :
Publisher : Frontiers Media SA
Total Pages : 199
Release :
ISBN-10 : 9782889454587
ISBN-13 : 2889454584
Rating : 4/5 (87 Downloads)

Synopsis Brain Oscillations in Human Communication by : Anne Keitel

Brain oscillations, or neural rhythms, reflect widespread functional connections between large-scale neural networks, as well as within cortical networks. As such they have been related to many aspects of human behaviour. An increasing number of studies have demonstrated the role of brain oscillations at distinct frequency bands in cognitive, sensory and motor tasks. Consequentially, those rhythms also affect diverse aspects of human communication. On the one hand, this comprises verbal communication; a field where the understanding of neural mechanisms has seen huge advances in recent years. Speech is inherently organised in a rhythmic manner. For example, time scales of phonemes and syllables, but also formal prosodic aspects such as intonation and stress, fall into distinct frequency bands. Likewise, neural rhythms in the brain play a role in speech segmentation and coding of continuous speech at multiple time scales, as well as in the production of speech. On the other hand, human communication involves widespread and diverse nonverbal aspects where the role of neural rhythms is far less understood. This can be the enhancement of speech processing through visual signals, thought to be guided via brain oscillations, or the conveying of emotion, which results in differential rhythmic modulations in the observer. Additionally, body movements and gestures often have a communicative purpose and are known to modulate sensorimotor rhythms in the observer. This Research Topic of Frontiers in Human Neuroscience highlights the diverse aspects of human communication that are shaped by rhythmic activity in the brain. Relevant contributions are presented from various fields including cognitive and social neuroscience, neuropsychiatry, and methodology. As such they provide important new insights into verbal and non-verbal communication, pathological changes, and methodological innovations.

Criticality in Neural Systems

Criticality in Neural Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 734
Release :
ISBN-10 : 9783527651023
ISBN-13 : 3527651020
Rating : 4/5 (23 Downloads)

Synopsis Criticality in Neural Systems by : Dietmar Plenz

Neurowissenschaftler suchen nach Antworten auf die Fragen, wie wir lernen und Information speichern, welche Prozesse im Gehirn verantwortlich sind und in welchem Zeitrahmen diese ablaufen. Die Konzepte, die aus der Physik kommen und weiterentwickelt werden, können in Medizin und Soziologie, aber auch in Robotik und Bildanalyse Anwendung finden. Zentrales Thema dieses Buches sind die sogenannten kritischen Phänomene im Gehirn. Diese werden mithilfe mathematischer und physikalischer Modelle beschrieben, mit denen man auch Erdbeben, Waldbrände oder die Ausbreitung von Epidemien modellieren kann. Neuere Erkenntnisse haben ergeben, dass diese selbstgeordneten Instabilitäten auch im Nervensystem auftreten. Dieses Referenzwerk stellt theoretische und experimentelle Befunde internationaler Gehirnforschung vor zeichnet die Perspektiven dieses neuen Forschungsfeldes auf.

Neurobiology of Language

Neurobiology of Language
Author :
Publisher : Academic Press
Total Pages : 1188
Release :
ISBN-10 : 9780124078628
ISBN-13 : 0124078621
Rating : 4/5 (28 Downloads)

Synopsis Neurobiology of Language by : Gregory Hickok

Neurobiology of Language explores the study of language, a field that has seen tremendous progress in the last two decades. Key to this progress is the accelerating trend toward integration of neurobiological approaches with the more established understanding of language within cognitive psychology, computer science, and linguistics. This volume serves as the definitive reference on the neurobiology of language, bringing these various advances together into a single volume of 100 concise entries. The organization includes sections on the field's major subfields, with each section covering both empirical data and theoretical perspectives. "Foundational" neurobiological coverage is also provided, including neuroanatomy, neurophysiology, genetics, linguistic, and psycholinguistic data, and models. - Foundational reference for the current state of the field of the neurobiology of language - Enables brain and language researchers and students to remain up-to-date in this fast-moving field that crosses many disciplinary and subdisciplinary boundaries - Provides an accessible entry point for other scientists interested in the area, but not actively working in it – e.g., speech therapists, neurologists, and cognitive psychologists - Chapters authored by world leaders in the field – the broadest, most expert coverage available

The Relevance of the Time Domain to Neural Network Models

The Relevance of the Time Domain to Neural Network Models
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 9781461407249
ISBN-13 : 1461407249
Rating : 4/5 (49 Downloads)

Synopsis The Relevance of the Time Domain to Neural Network Models by : A. Ravishankar Rao

A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs. The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchronizing elements have been shown to be effective in image processing and segmentation tasks, and also in solving the binding problem, which is of great significance in the field of neuroscience. The oscillatory neural models can be employed at multiple scales of abstraction, ranging from individual neurons, to groups of neurons using Wilson-Cowan modeling techniques and eventually to the behavior of entire brain regions as revealed in oscillations observed in EEG recordings. A second interesting direction to consider is to understand the effect of different neural network topologies on their ability to create the desired synchronization. A third direction of interest is the extraction of temporal signaling patterns from brain imaging data such as EEG and fMRI. Hence this Special Session is of emerging interest in the brain sciences, as imaging techniques are able to resolve sufficient temporal detail to provide an insight into how the time domain is deployed in cognitive function. The following broad topics will be covered in the book: Synchronization, phase-locking behavior, image processing, image segmentation, temporal pattern analysis, EEG analysis, fMRI analyis, network topology and synchronizability, cortical interactions involving synchronization, and oscillatory neural networks. This book will benefit readers interested in the topics of computational neuroscience, applying neural network models to understand brain function, extracting temporal information from brain imaging data, and emerging techniques for image segmentation using oscillatory networks

Brain Function and Oscillations

Brain Function and Oscillations
Author :
Publisher : Springer Science & Business Media
Total Pages : 491
Release :
ISBN-10 : 9783642598937
ISBN-13 : 3642598935
Rating : 4/5 (37 Downloads)

Synopsis Brain Function and Oscillations by : Erol Başar

Neuroscience is ripe for a paradigm change as Freeman and Mountcastle describe. Brain Oscillations provide an important key to this change. In this book the functional importance of the brain's multiple oscillations is treated with an integrative scope. According to the author, neurophysiology and cognition demand integrative approaches similar to those of Galilei and Newton in physics and of Darwin in biology. Not only the human brain but also lower brains and ganglia of invertebrates are treated with electrophysical methods. Experiments on sensory registration, perception, movement, and cognitive processes related to attention, learning, and memory are described. A synopsis on brain functions leads to a new neuron assemblies doctrine, extending the concept of Sherrington, and new trends in this field. The book will appeal to scientists and graduate students.