Ordinary Differential Equations Basics And Beyond
Download Ordinary Differential Equations Basics And Beyond full books in PDF, epub, and Kindle. Read online free Ordinary Differential Equations Basics And Beyond ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David G. Schaeffer |
Publisher |
: Springer |
Total Pages |
: 565 |
Release |
: 2016-11-10 |
ISBN-10 |
: 9781493963898 |
ISBN-13 |
: 1493963899 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Ordinary Differential Equations: Basics and Beyond by : David G. Schaeffer
This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).
Author |
: Chin-Yuan Lin |
Publisher |
: World Scientific |
Total Pages |
: 555 |
Release |
: 2011 |
ISBN-10 |
: 9789814307123 |
ISBN-13 |
: 9814307122 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Theory and Examples of Ordinary Differential Equations by : Chin-Yuan Lin
This book presents a complete theory of ordinary differential equations, with many illustrative examples and interesting exercises. A rigorous treatment is offered in this book with clear proofs for the theoretical results and with detailed solutions for the examples and problems. This book is intended for undergraduate students who major in mathematics and have acquired a prerequisite knowledge of calculus and partly the knowledge of a complex variable, and are now reading advanced calculus and linear algebra. Additionally, the comprehensive coverage of the theory with a wide array of examples and detailed solutions, would appeal to mathematics graduate students and researchers as well as graduate students in majors of other disciplines. As a handy reference, advanced knowledge is provided in this book with details developed beyond the basics; optional sections, where main results are extended, offer an understanding of further applications of ordinary differential equations.
Author |
: William A. Adkins |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 807 |
Release |
: 2012-07-01 |
ISBN-10 |
: 9781461436188 |
ISBN-13 |
: 1461436184 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Ordinary Differential Equations by : William A. Adkins
Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
Author |
: Shair Ahmad |
Publisher |
: Springer |
Total Pages |
: 337 |
Release |
: 2015-06-05 |
ISBN-10 |
: 9783319164083 |
ISBN-13 |
: 3319164082 |
Rating |
: 4/5 (83 Downloads) |
Synopsis A Textbook on Ordinary Differential Equations by : Shair Ahmad
This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.
Author |
: Ravi P. Agarwal |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 333 |
Release |
: 2008-12-10 |
ISBN-10 |
: 9780387712765 |
ISBN-13 |
: 0387712763 |
Rating |
: 4/5 (65 Downloads) |
Synopsis An Introduction to Ordinary Differential Equations by : Ravi P. Agarwal
Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an "answers and hints" section, are included. The book further provides a background and history of the subject.
Author |
: Bindhyachal Rai |
Publisher |
: CRC Press |
Total Pages |
: 484 |
Release |
: 2002 |
ISBN-10 |
: 0849309921 |
ISBN-13 |
: 9780849309922 |
Rating |
: 4/5 (21 Downloads) |
Synopsis A Course in Ordinary Differential Equations by : Bindhyachal Rai
Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.
Author |
: Morris Tenenbaum |
Publisher |
: Courier Corporation |
Total Pages |
: 852 |
Release |
: 1985-10-01 |
ISBN-10 |
: 9780486649405 |
ISBN-13 |
: 0486649407 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Ordinary Differential Equations by : Morris Tenenbaum
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Author |
: Kenneth B. Howell |
Publisher |
: CRC Press |
Total Pages |
: 907 |
Release |
: 2019-12-06 |
ISBN-10 |
: 9781000701951 |
ISBN-13 |
: 1000701956 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Ordinary Differential Equations by : Kenneth B. Howell
The Second Edition of Ordinary Differential Equations: An Introduction to the Fundamentals builds on the successful First Edition. It is unique in its approach to motivation, precision, explanation and method. Its layered approach offers the instructor opportunity for greater flexibility in coverage and depth. Students will appreciate the author’s approach and engaging style. Reasoning behind concepts and computations motivates readers. New topics are introduced in an easily accessible manner before being further developed later. The author emphasizes a basic understanding of the principles as well as modeling, computation procedures and the use of technology. The students will further appreciate the guides for carrying out the lengthier computational procedures with illustrative examples integrated into the discussion. Features of the Second Edition: Emphasizes motivation, a basic understanding of the mathematics, modeling and use of technology A layered approach that allows for a flexible presentation based on instructor's preferences and students’ abilities An instructor’s guide suggesting how the text can be applied to different courses New chapters on more advanced numerical methods and systems (including the Runge-Kutta method and the numerical solution of second- and higher-order equations) Many additional exercises, including two "chapters" of review exercises for first- and higher-order differential equations An extensive on-line solution manual About the author: Kenneth B. Howell earned bachelor’s degrees in both mathematics and physics from Rose-Hulman Institute of Technology, and master’s and doctoral degrees in mathematics from Indiana University. For more than thirty years, he was a professor in the Department of Mathematical Sciences of the University of Alabama in Huntsville. Dr. Howell published numerous research articles in applied and theoretical mathematics in prestigious journals, served as a consulting research scientist for various companies and federal agencies in the space and defense industries, and received awards from the College and University for outstanding teaching. He is also the author of Principles of Fourier Analysis, Second Edition (Chapman & Hall/CRC, 2016).
Author |
: Gerald Teschl |
Publisher |
: American Mathematical Society |
Total Pages |
: 370 |
Release |
: 2024-01-12 |
ISBN-10 |
: 9781470476410 |
ISBN-13 |
: 147047641X |
Rating |
: 4/5 (10 Downloads) |
Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Author |
: Albert L. Rabenstein |
Publisher |
: Academic Press |
Total Pages |
: 444 |
Release |
: 2014-05-12 |
ISBN-10 |
: 9781483226224 |
ISBN-13 |
: 1483226220 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Introduction to Ordinary Differential Equations by : Albert L. Rabenstein
Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.