Orbitals, Terms and States

Orbitals, Terms and States
Author :
Publisher : Courier Dover Publications
Total Pages : 191
Release :
ISBN-10 : 9780486842318
ISBN-13 : 0486842312
Rating : 4/5 (18 Downloads)

Synopsis Orbitals, Terms and States by : Malcolm Gerloch

This highly regarded text offers a fine introduction to quantum chemistry, especially for students with a limited mathematical background, and provides an excellent supplement to any chemistry text. Geared toward undergraduates in chemistry and related fields, it covers atomic and molecular spectroscopy, quantum mechanics, and bonding theory, among other topics. Mathematical explanations are presented as simply as possible, and difficult subjects are given full explanations.

Orbitals, Terms and States

Orbitals, Terms and States
Author :
Publisher :
Total Pages : 204
Release :
ISBN-10 : UOM:39015068663700
ISBN-13 :
Rating : 4/5 (00 Downloads)

Synopsis Orbitals, Terms and States by : M. Gerloch

Devoted exclusively to orbitals, terms, levels and states, this book describes in detail the underlying physical structure and ideas. Mathematical explanations are not avoided completely - as this may lead to confusion by providing an incomplete picture - but they are presented in a simple form.

Atmospheric Evolution on Inhabited and Lifeless Worlds

Atmospheric Evolution on Inhabited and Lifeless Worlds
Author :
Publisher : Cambridge University Press
Total Pages : 595
Release :
ISBN-10 : 9780521844123
ISBN-13 : 0521844126
Rating : 4/5 (23 Downloads)

Synopsis Atmospheric Evolution on Inhabited and Lifeless Worlds by : David C. Catling

A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.

Orbital Interactions in Chemistry

Orbital Interactions in Chemistry
Author :
Publisher : John Wiley & Sons
Total Pages : 853
Release :
ISBN-10 : 9780471080398
ISBN-13 : 047108039X
Rating : 4/5 (98 Downloads)

Synopsis Orbital Interactions in Chemistry by : Thomas A. Albright

Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.

Quantum Mechanics in Chemistry

Quantum Mechanics in Chemistry
Author :
Publisher : Addison Wesley Longman
Total Pages : 292
Release :
ISBN-10 : UOM:39015016098736
ISBN-13 :
Rating : 4/5 (36 Downloads)

Synopsis Quantum Mechanics in Chemistry by : Melvin W. Hanna

Includes bibliographical references.

Molecular Orbitals and Organic Chemical Reactions

Molecular Orbitals and Organic Chemical Reactions
Author :
Publisher : John Wiley & Sons
Total Pages : 389
Release :
ISBN-10 : 9781119964650
ISBN-13 : 1119964652
Rating : 4/5 (50 Downloads)

Synopsis Molecular Orbitals and Organic Chemical Reactions by : Ian Fleming

Winner of the PROSE Award for Chemistry & Physics 2010 Acknowledging the very best in professional and scholarly publishing, the annual PROSE Awards recognise publishers' and authors' commitment to pioneering works of research and for contributing to the conception, production, and design of landmark works in their fields. Judged by peer publishers, librarians, and medical professionals, Wiley are pleased to congratulate Professor Ian Fleming, winner of the PROSE Award in Chemistry and Physics for Molecular Orbitals and Organic Chemical Reactions. Molecular orbital theory is used by chemists to describe the arrangement of electrons in chemical structures. It is also a theory capable of giving some insight into the forces involved in the making and breaking of chemical bonds—the chemical reactions that are often the focus of an organic chemist's interest. Organic chemists with a serious interest in understanding and explaining their work usually express their ideas in molecular orbital terms, so much so that it is now an essential component of every organic chemist's skills to have some acquaintance with molecular orbital theory. Molecular Orbitals and Organic Chemical Reactions is both a simplified account of molecular orbital theory and a review of its applications in organic chemistry; it provides a basic introduction to the subject and a wealth of illustrative examples. In this book molecular orbital theory is presented in a much simplified, and entirely non-mathematical language, accessible to every organic chemist, whether student or research worker, whether mathematically competent or not. Topics covered include: Molecular Orbital Theory Molecular Orbitals and the Structures of Organic Molecules Chemical Reactions — How Far and How Fast Ionic Reactions — Reactivity Ionic Reactions — Stereochemistry Pericyclic Reactions Radical Reactions Photochemical Reactions Slides for lectures and presentations are available on the supplementary website: www.wiley.com/go/fleming_student Molecular Orbitals and Organic Chemical Reactions: Student Edition is an invaluable first textbook on this important subject for students of organic, physical organic and computational chemistry. The Reference Edition edition takes the content and the same non-mathematical approach of the Student Edition, and adds extensive extra subject coverage, detail and over 1500 references. The additional material adds a deeper understanding of the models used, and includes a broader range of applications and case studies. Providing a complete in-depth reference for a more advanced audience, this edition will find a place on the bookshelves of researchers and advanced students of organic, physical organic and computational chemistry. Further information can be viewed here. "These books are the result of years of work, which began as an attempt to write a second edition of my 1976 book Frontier Orbitals and Organic Chemical Reactions. I wanted to give a rather more thorough introduction to molecular orbitals, while maintaining my focus on the organic chemist who did not want a mathematical account, but still wanted to understand organic chemistry at a physical level. I'm delighted to win this prize, and hope a new generation of chemists will benefit from these books." -Professor Ian Fleming

Discovering Chemistry With Natural Bond Orbitals

Discovering Chemistry With Natural Bond Orbitals
Author :
Publisher : John Wiley & Sons
Total Pages : 342
Release :
ISBN-10 : 9781118229194
ISBN-13 : 1118229193
Rating : 4/5 (94 Downloads)

Synopsis Discovering Chemistry With Natural Bond Orbitals by : Frank Weinhold

This book explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies which are relevant in reactivity problems. It offers the first book on conceptual quantum chemistry, a key area for understanding chemical principles and predicting chemical properties. It presents NBO mathematical algorithms embedded in a well-tested and widely used computer program (currently, NBO 5.9). While encouraging a "look under the hood" (Appendix A), this book mainly enables students to gain proficiency in using the NBO program to re-express complex wavefunctions in terms of intuitive chemical concepts and orbital imagery.

A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1
Author :
Publisher : Dalal Institute
Total Pages : 480
Release :
ISBN-10 : 9788193872000
ISBN-13 : 8193872002
Rating : 4/5 (00 Downloads)

Synopsis A Textbook of Inorganic Chemistry – Volume 1 by : Mandeep Dalal

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory, dπ -pπ bonds, Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions, Trends in stepwise constants, Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand, Chelate effect and its thermodynamic origin, Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes, Mechanisms for ligand replacement reactions, Formation of complexes from aquo ions, Ligand displacement reactions in octahedral complexes- acid hydrolysis, Base hydrolysis, Racemization of tris chelate complexes, Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes, The trans effect, Theories of trans effect, Mechanism of electron transfer reactions – types; Outer sphere electron transfer mechanism and inner sphere electron transfer mechanism, Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory, Molecular orbital theory, octahedral, tetrahedral or square planar complexes, π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals, Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states), Calculation of Dq, B and β parameters, Effect of distortion on the d-orbital energy levels, Structural evidence from electronic spectrum, John-Tellar effect, Spectrochemical and nephalauxetic series, Charge transfer spectra, Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry, Guoy’s method for determination of magnetic susceptibility, Calculation of magnetic moments, Magnetic properties of free ions, Orbital contribution, effect of ligand-field, Application of magneto-chemistry in structure determination, Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes, Wade’s rules, Carboranes, Metal Carbonyl Clusters - Low Nuclearity Carbonyl Clusters, Total Electron Count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls, structure and bonding, Vibrational spectra of metal carbonyls for bonding and structure elucidation, Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.

Chemistry 2e

Chemistry 2e
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 194717262X
ISBN-13 : 9781947172623
Rating : 4/5 (2X Downloads)

Synopsis Chemistry 2e by : Paul Flowers

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.

Orbitals in Chemistry

Orbitals in Chemistry
Author :
Publisher : Cambridge University Press
Total Pages : 336
Release :
ISBN-10 : 052166649X
ISBN-13 : 9780521666497
Rating : 4/5 (9X Downloads)

Synopsis Orbitals in Chemistry by : Victor M. S. Gil

This text presents a unified and up-to-date discussion of the role of atomic and molecular orbitals in chemistry, from the quantum mechanical foundations to the recent developments and applications. The discussion is mainly qualitative, largely based on symmetry arguments. It is felt that a sound mastering of the concepts and qualitative interpretations is needed, especially when students are becoming more and more familiar with numerical calculations based on atomic and molecular orbitals. The text is mathematically less demanding than most traditional quantum chemistry books but still retains clarity and rigour. The physical insight is maximized and abundant illustrations are used. The relationships between the more formal quantum mechanical formalisms and the traditional chemical descriptions of chemical bonding are critically established. This book is of primary interest to undergraduate chemistry students and others taking courses of which chemistry is a significant part.