Optical Propagation in Linear Media

Optical Propagation in Linear Media
Author :
Publisher : Oxford University Press
Total Pages : 578
Release :
ISBN-10 : 9780195091618
ISBN-13 : 0195091612
Rating : 4/5 (18 Downloads)

Synopsis Optical Propagation in Linear Media by : Michael E. Thomas

Publisher description

Light Propagation in Linear Optical Media

Light Propagation in Linear Optical Media
Author :
Publisher : CRC Press
Total Pages : 388
Release :
ISBN-10 : 9781482210958
ISBN-13 : 1482210959
Rating : 4/5 (58 Downloads)

Synopsis Light Propagation in Linear Optical Media by : Glen D. Gillen

Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation of Gaussian beams and discuss various diffraction models for the propagation of light. They also explore methods for spatially confining (trapping) cold atoms within localized light-intensity patterns. This book can be used as a technical reference by professional scientists and engineers interested in light propagation and as a supplemental text for upper-level undergraduate or graduate courses in optics.

Optical Propagation in Linear Media

Optical Propagation in Linear Media
Author :
Publisher : Oxford University Press
Total Pages : 578
Release :
ISBN-10 : 9780195357974
ISBN-13 : 0195357973
Rating : 4/5 (74 Downloads)

Synopsis Optical Propagation in Linear Media by : Michael E. Thomas

A typical optical system is composed of three basic components: a source, a detector, and a medium in which the optical energy propagates. Many textbooks cover sources and detectors, but very few cover propagation in a comprehensive way, incorporating the latest progress in theory and experiment concerning the propagating medium. This book fulfills that need. It is the first comprehensive and self-contained book on this topic. It is useful reference book for researchers, and a textbook for courses like Laser Light Propagation, Solid State Optics, and Optical Propagation in the Atmosphere.

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB
Author :
Publisher : Society of Photo Optical
Total Pages : 196
Release :
ISBN-10 : 0819483265
ISBN-13 : 9780819483263
Rating : 4/5 (65 Downloads)

Synopsis Numerical Simulation of Optical Wave Propagation with Examples in MATLAB by : Jason Daniel Schmidt

Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.

Linear and Nonlinear Optics

Linear and Nonlinear Optics
Author :
Publisher : CRC Press
Total Pages : 345
Release :
ISBN-10 : 9781000091847
ISBN-13 : 1000091848
Rating : 4/5 (47 Downloads)

Synopsis Linear and Nonlinear Optics by : Kitsakorn Locharoenrat

In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.

Laser Beam Propagation Through Random Media

Laser Beam Propagation Through Random Media
Author :
Publisher : SPIE-International Society for Optical Engineering
Total Pages : 820
Release :
ISBN-10 : UOM:39015062444826
ISBN-13 :
Rating : 4/5 (26 Downloads)

Synopsis Laser Beam Propagation Through Random Media by : Larry C. Andrews

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Author :
Publisher : Elsevier
Total Pages : 578
Release :
ISBN-10 : 9780080455068
ISBN-13 : 0080455069
Rating : 4/5 (68 Downloads)

Synopsis Fundamentals of Optical Waveguides by : Katsunari Okamoto

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

Physical Optics

Physical Optics
Author :
Publisher : Springer Nature
Total Pages : 933
Release :
ISBN-10 : 9783030252793
ISBN-13 : 3030252795
Rating : 4/5 (93 Downloads)

Synopsis Physical Optics by : Giovanni Giusfredi

This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.

Beam Propagation Method for Design of Optical Waveguide Devices

Beam Propagation Method for Design of Optical Waveguide Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 401
Release :
ISBN-10 : 9781119083375
ISBN-13 : 1119083370
Rating : 4/5 (75 Downloads)

Synopsis Beam Propagation Method for Design of Optical Waveguide Devices by : Ginés Lifante Pedrola

The basic of the BPM technique in the frequency domain relies on treating the slowly varying envelope of the monochromatic electromagnetic field under paraxial propagation, thus allowing efficient numerical computation in terms of speed and allocated memory. In addition, the BPM based on finite differences is an easy way to implement robust and efficient computer codes. This book presents several approaches for treating the light: wide-angle, scalar approach, semivectorial treatment, and full vectorial treatment of the electromagnetic fields. Also, special topics in BPM cover the simulation of light propagation in anisotropic media, non-linear materials, electro-optic materials, and media with gain/losses, and describe how BPM can deal with strong index discontinuities or waveguide gratings, by introducing the bidirectional-BPM. BPM in the time domain is also described, and the book includes the powerful technique of finite difference time domain method, which fills the gap when the standard BPM is no longer applicable. Once the description of these numerical techniques have been detailed, the last chapter includes examples of passive, active and functional integrated photonic devices, such as waveguide reflectors, demultiplexers, polarization converters, electro-optic modulators, lasers or frequency converters. The book will help readers to understand several BPM approaches, to build their own codes, or to properly use the existing commercial software based on these numerical techniques.

Electromagnetic and Optical Pulse Propagation 1

Electromagnetic and Optical Pulse Propagation 1
Author :
Publisher : Springer
Total Pages : 464
Release :
ISBN-10 : 9780387347301
ISBN-13 : 0387347305
Rating : 4/5 (01 Downloads)

Synopsis Electromagnetic and Optical Pulse Propagation 1 by : Kurt E. Oughstun

This volume presents a detailed, rigorous treatment of the fundamental theory of electromagnetic pulse propagation in causally dispersive media that is applicable to dielectric, conducting, and semiconducting media. Asymptotic methods of approximation based upon saddle point methods are presented in detail.