OpenCV: Computer Vision Projects with Python

OpenCV: Computer Vision Projects with Python
Author :
Publisher : Packt Publishing Ltd
Total Pages : 558
Release :
ISBN-10 : 9781787123847
ISBN-13 : 1787123847
Rating : 4/5 (47 Downloads)

Synopsis OpenCV: Computer Vision Projects with Python by : Joseph Howse

Get savvy with OpenCV and actualize cool computer vision applications About This Book Use OpenCV's Python bindings to capture video, manipulate images, and track objects Learn about the different functions of OpenCV and their actual implementations. Develop a series of intermediate to advanced projects using OpenCV and Python Who This Book Is For This learning path is for someone who has a working knowledge of Python and wants to try out OpenCV. This Learning Path will take you from a beginner to an expert in computer vision applications using OpenCV. OpenCV's application are humongous and this Learning Path is the best resource to get yourself acquainted thoroughly with OpenCV. What You Will Learn Install OpenCV and related software such as Python, NumPy, SciPy, OpenNI, and SensorKinect - all on Windows, Mac or Ubuntu Apply "curves" and other color transformations to simulate the look of old photos, movies, or video games Apply geometric transformations to images, perform image filtering, and convert an image into a cartoon-like image Recognize hand gestures in real time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor Reconstruct a 3D real-world scene from 2D camera motion and common camera reprojection techniques Detect and recognize street signs using a cascade classifier and support vector machines (SVMs) Identify emotional expressions in human faces using convolutional neural networks (CNNs) and SVMs Strengthen your OpenCV2 skills and learn how to use new OpenCV3 features In Detail OpenCV is a state-of-art computer vision library that allows a great variety of image and video processing operations. OpenCV for Python enables us to run computer vision algorithms in real time. This learning path proposes to teach the following topics. First, we will learn how to get started with OpenCV and OpenCV3's Python API, and develop a computer vision application that tracks body parts. Then, we will build amazing intermediate-level computer vision applications such as making an object disappear from an image, identifying different shapes, reconstructing a 3D map from images , and building an augmented reality application, Finally, we'll move to more advanced projects such as hand gesture recognition, tracking visually salient objects, as well as recognizing traffic signs and emotions on faces using support vector machines and multi-layer perceptrons respectively. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: OpenCV Computer Vision with Python by Joseph Howse OpenCV with Python By Example by Prateek Joshi OpenCV with Python Blueprints by Michael Beyeler Style and approach This course aims to create a smooth learning path that will teach you how to get started with will learn how to get started with OpenCV and OpenCV 3's Python API, and develop superb computer vision applications. Through this comprehensive course, you'll learn to create computer vision applications from scratch to finish and more!.

Computer Vision Projects with OpenCV and Python 3

Computer Vision Projects with OpenCV and Python 3
Author :
Publisher : Packt Publishing Ltd
Total Pages : 179
Release :
ISBN-10 : 9781789954906
ISBN-13 : 1789954908
Rating : 4/5 (06 Downloads)

Synopsis Computer Vision Projects with OpenCV and Python 3 by : Matthew Rever

Gain a working knowledge of advanced machine learning and explore Python’s powerful tools for extracting data from images and videos Key FeaturesImplement image classification and object detection using machine learning and deep learningPerform image classification, object detection, image segmentation, and other Computer Vision tasksCrisp content with a practical approach to solving real-world problems in Computer VisionBook Description Python is the ideal programming language for rapidly prototyping and developing production-grade codes for image processing and Computer Vision with its robust syntax and wealth of powerful libraries. This book will help you design and develop production-grade Computer Vision projects tackling real-world problems. With the help of this book, you will learn how to set up Anaconda and Python for the major OSes with cutting-edge third-party libraries for Computer Vision. You'll learn state-of-the-art techniques for classifying images, finding and identifying human postures, and detecting faces within videos. You will use powerful machine learning tools such as OpenCV, Dlib, and TensorFlow to build exciting projects such as classifying handwritten digits, detecting facial features,and much more. The book also covers some advanced projects, such as reading text from license plates from real-world images using Google’s Tesseract software, and tracking human body poses using DeeperCut within TensorFlow. By the end of this book, you will have the expertise required to build your own Computer Vision projects using Python and its associated libraries. What you will learnInstall and run major Computer Vision packages within PythonApply powerful support vector machines for simple digit classificationUnderstand deep learning with TensorFlowBuild a deep learning classifier for general imagesUse LSTMs for automated image captioningRead text from real-world imagesExtract human pose data from imagesWho this book is for Python programmers and machine learning developers who wish to build exciting Computer Vision projects using the power of machine learning and OpenCV will find this book useful. The only prerequisite for this book is that you should have a sound knowledge of Python programming.

Mastering OpenCV with Practical Computer Vision Projects

Mastering OpenCV with Practical Computer Vision Projects
Author :
Publisher : Packt Publishing Ltd
Total Pages : 500
Release :
ISBN-10 : 9781849517836
ISBN-13 : 1849517835
Rating : 4/5 (36 Downloads)

Synopsis Mastering OpenCV with Practical Computer Vision Projects by : Daniel Lélis Baggio

Each chapter in the book is an individual project and each project is constructed with step-by-step instructions, clearly explained code, and includes the necessary screenshots. You should have basic OpenCV and C/C++ programming experience before reading this book, as it is aimed at Computer Science graduates, researchers, and computer vision experts widening their expertise.

OpenCV Computer Vision with Python

OpenCV Computer Vision with Python
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1782163921
ISBN-13 : 9781782163923
Rating : 4/5 (21 Downloads)

Synopsis OpenCV Computer Vision with Python by : Joseph Howse

A practical, project-based tutorial for Python developers and hobbyists who want to get started with computer vision with OpenCV and Python.OpenCV Computer Vision with Python is written for Python developers who are new to computer vision and want a practical guide to teach them the essentials. Some understanding of image data (for example, pixels and color channels) would be beneficial. At a minimum you will need access to at least one webcam. Certain exercises require additional hardware like a second webcam, a Microsoft Kinect or an OpenNI-compliant depth sensor such as the Asus Xtion PRO.

OpenCV 3 Computer Vision with Python Cookbook

OpenCV 3 Computer Vision with Python Cookbook
Author :
Publisher : Packt Publishing Ltd
Total Pages : 296
Release :
ISBN-10 : 9781788478755
ISBN-13 : 1788478754
Rating : 4/5 (55 Downloads)

Synopsis OpenCV 3 Computer Vision with Python Cookbook by : Aleksei Spizhevoi

OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...

Learning OpenCV 4 Computer Vision with Python 3

Learning OpenCV 4 Computer Vision with Python 3
Author :
Publisher : Packt Publishing Ltd
Total Pages : 364
Release :
ISBN-10 : 9781789530643
ISBN-13 : 1789530644
Rating : 4/5 (43 Downloads)

Synopsis Learning OpenCV 4 Computer Vision with Python 3 by : Joseph Howse

Updated for OpenCV 4 and Python 3, this book covers the latest on depth cameras, 3D tracking, augmented reality, and deep neural networks, helping you solve real-world computer vision problems with practical code Key Features Build powerful computer vision applications in concise code with OpenCV 4 and Python 3 Learn the fundamental concepts of image processing, object classification, and 2D and 3D tracking Train, use, and understand machine learning models such as Support Vector Machines (SVMs) and neural networks Book Description Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You'll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. Next, you'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you'll develop your skills in 3D tracking and augmented reality. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you'll have the skills you need to execute real-world computer vision projects. What you will learn Install and familiarize yourself with OpenCV 4's Python 3 bindings Understand image processing and video analysis basics Use a depth camera to distinguish foreground and background regions Detect and identify objects, and track their motion in videos Train and use your own models to match images and classify objects Detect and recognize faces, and classify their gender and age Build an augmented reality application to track an image in 3D Work with machine learning models, including SVMs, artificial neural networks (ANNs), and deep neural networks (DNNs) Who this book is for If you are interested in learning computer vision, machine learning, and OpenCV in the context of practical real-world applications, then this book is for you. This OpenCV book will also be useful for anyone getting started with computer vision as well as experts who want to stay up-to-date with OpenCV 4 and Python 3. Although no prior knowledge of image processing, computer vision or machine learning is required, familiarity with basic Python programming is a must.

Machine Learning for OpenCV

Machine Learning for OpenCV
Author :
Publisher : Packt Publishing Ltd
Total Pages : 368
Release :
ISBN-10 : 9781783980291
ISBN-13 : 178398029X
Rating : 4/5 (91 Downloads)

Synopsis Machine Learning for OpenCV by : Michael Beyeler

Expand your OpenCV knowledge and master key concepts of machine learning using this practical, hands-on guide. About This Book Load, store, edit, and visualize data using OpenCV and Python Grasp the fundamental concepts of classification, regression, and clustering Understand, perform, and experiment with machine learning techniques using this easy-to-follow guide Evaluate, compare, and choose the right algorithm for any task Who This Book Is For This book targets Python programmers who are already familiar with OpenCV; this book will give you the tools and understanding required to build your own machine learning systems, tailored to practical real-world tasks. What You Will Learn Explore and make effective use of OpenCV's machine learning module Learn deep learning for computer vision with Python Master linear regression and regularization techniques Classify objects such as flower species, handwritten digits, and pedestrians Explore the effective use of support vector machines, boosted decision trees, and random forests Get acquainted with neural networks and Deep Learning to address real-world problems Discover hidden structures in your data using k-means clustering Get to grips with data pre-processing and feature engineering In Detail Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google's DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning. By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch! Style and approach OpenCV machine learning connects the fundamental theoretical principles behind machine learning to their practical applications in a way that focuses on asking and answering the right questions. This book walks you through the key elements of OpenCV and its powerful machine learning classes, while demonstrating how to get to grips with a range of models.

Building Computer Vision Projects with OpenCV 4 and C++

Building Computer Vision Projects with OpenCV 4 and C++
Author :
Publisher : Packt Publishing Ltd
Total Pages : 527
Release :
ISBN-10 : 9781838641269
ISBN-13 : 1838641262
Rating : 4/5 (69 Downloads)

Synopsis Building Computer Vision Projects with OpenCV 4 and C++ by : David Millán Escrivá

Delve into practical computer vision and image processing projects and get up to speed with advanced object detection techniques and machine learning algorithms Key FeaturesDiscover best practices for engineering and maintaining OpenCV projectsExplore important deep learning tools for image classificationUnderstand basic image matrix formats and filtersBook Description OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán EscriváLearn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek JoshiWhat you will learnStay up-to-date with algorithmic design approaches for complex computer vision tasksWork with OpenCV's most up-to-date API through various projectsUnderstand 3D scene reconstruction and Structure from Motion (SfM)Study camera calibration and overlay augmented reality (AR) using the ArUco moduleCreate CMake scripts to compile your C++ applicationExplore segmentation and feature extraction techniquesRemove backgrounds from static scenes to identify moving objects for surveillanceWork with new OpenCV functions to detect and recognize text with TesseractWho this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, this Learning Path is for you. Prior knowledge of C++ and familiarity with mathematical concepts will help you better understand the concepts in this Learning Path.

Programming Computer Vision with Python

Programming Computer Vision with Python
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 262
Release :
ISBN-10 : 9781449341930
ISBN-13 : 1449341934
Rating : 4/5 (30 Downloads)

Synopsis Programming Computer Vision with Python by : Jan Erik Solem

If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface

Qt 5 and OpenCV 4 Computer Vision Projects

Qt 5 and OpenCV 4 Computer Vision Projects
Author :
Publisher : Packt Publishing Ltd
Total Pages : 342
Release :
ISBN-10 : 9781789531831
ISBN-13 : 1789531837
Rating : 4/5 (31 Downloads)

Synopsis Qt 5 and OpenCV 4 Computer Vision Projects by : Zhuo Qingliang

Create image processing, object detection and face recognition apps by leveraging the power of machine learning and deep learning with OpenCV 4 and Qt 5 Key FeaturesGain practical insights into code for all projects covered in this bookUnderstand modern computer vision concepts such as character recognition, image processing and modificationLearn to use a graphics processing unit (GPU) and its parallel processing power for filtering images quicklyBook Description OpenCV and Qt have proven to be a winning combination for developing cross-platform computer vision applications. By leveraging their power, you can create robust applications with both an intuitive graphical user interface (GUI) and high-performance capabilities. This book will help you learn through a variety of real-world projects on image processing, face and text recognition, object detection, and high-performance computing. You’ll be able to progressively build on your skills by working on projects of increasing complexity. You’ll begin by creating an image viewer application, building a user interface from scratch by adding menus, performing actions based on key-presses, and applying other functions. As you progress, the book will guide you through using OpenCV image processing and modification functions to edit an image with filters and transformation features. In addition to this, you’ll explore the complex motion analysis and facial landmark detection algorithms, which you can use to build security and face detection applications. Finally, you’ll learn to use pretrained deep learning models in OpenCV and GPUs to filter images quickly. By the end of this book, you will have learned how to effectively develop full-fledged computer vision applications with OpenCV and Qt. What you will learnCreate an image viewer with all the basic requirementsConstruct an image editor to filter or transform imagesDevelop a security app to detect movement and secure homesBuild an app to detect facial landmarks and apply masks to facesCreate an app to extract text from scanned documents and photosTrain and use cascade classifiers and DL models for object detectionBuild an app to measure the distance between detected objectsImplement high-speed image filters on GPU with Open Graphics Library (OpenGL)Who this book is for This book is for engineers and developers who are familiar with both Qt and OpenCV frameworks and are capable of creating simple projects using them, but want to build their skills to create professional-level projects using them. Familiarity with the C++ language is a must to follow the example source codes in this book.