Opencl Programming By Example
Download Opencl Programming By Example full books in PDF, epub, and Kindle. Read online free Opencl Programming By Example ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ravishekhar Banger |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 437 |
Release |
: 2013-12-23 |
ISBN-10 |
: 9781849692359 |
ISBN-13 |
: 1849692351 |
Rating |
: 4/5 (59 Downloads) |
Synopsis OpenCL Programming by Example by : Ravishekhar Banger
This book follows an example-driven, simplified, and practical approach to using OpenCL for general purpose GPU programming. If you are a beginner in parallel programming and would like to quickly accelerate your algorithms using OpenCL, this book is perfect for you! You will find the diverse topics and case studies in this book interesting and informative. You will only require a good knowledge of C programming for this book, and an understanding of parallel implementations will be useful, but not necessary.
Author |
: Aaftab Munshi |
Publisher |
: Pearson Education |
Total Pages |
: 649 |
Release |
: 2011-07-07 |
ISBN-10 |
: 9780132594554 |
ISBN-13 |
: 0132594552 |
Rating |
: 4/5 (54 Downloads) |
Synopsis OpenCL Programming Guide by : Aaftab Munshi
Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/
Author |
: Matthew Scarpino |
Publisher |
: Simon and Schuster |
Total Pages |
: 668 |
Release |
: 2011-11-13 |
ISBN-10 |
: 9781638352389 |
ISBN-13 |
: 1638352380 |
Rating |
: 4/5 (89 Downloads) |
Synopsis OpenCL in Action by : Matthew Scarpino
Summary OpenCL in Action is a thorough, hands-on presentation of OpenCL, with an eye toward showing developers how to build high-performance applications of their own. It begins by presenting the core concepts behind OpenCL, including vector computing, parallel programming, and multi-threaded operations, and then guides you step-by-step from simple data structures to complex functions. About the Technology Whatever system you have, it probably has more raw processing power than you're using. OpenCL is a high-performance programming language that maximizes computational power by executing on CPUs, graphics processors, and other number-crunching devices. It's perfect for speed-sensitive tasks like vector computing, matrix operations, and graphics acceleration. About this Book OpenCL in Action blends the theory of parallel computing with the practical reality of building high-performance applications using OpenCL. It first guides you through the fundamental data structures in an intuitive manner. Then, it explains techniques for high-speed sorting, image processing, matrix operations, and fast Fourier transform. The book concludes with a deep look at the all-important subject of graphics acceleration. Numerous challenging examples give you different ways to experiment with working code. A background in C or C++ is helpful, but no prior exposure to OpenCL is needed. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside Learn OpenCL step by step Tons of annotated code Tested algorithms for maximum performance *********** Table of Contents PART 1 FOUNDATIONS OF OPENCL PROGRAMMING Introducing OpenCL Host programming: fundamental data structures Host programming: data transfer and partitioning Kernel programming: data types and device memory Kernel programming: operators and functions Image processing Events, profiling, and synchronization Development with C++ Development with Java and Python General coding principles PART 2 CODING PRACTICAL ALGORITHMS IN OPENCL Reduction and sorting Matrices and QR decomposition Sparse matrices Signal processing and the fast Fourier transform PART 3 ACCELERATING OPENGL WITH OPENCL Combining OpenCL and OpenGL Textures and renderbuffers
Author |
: Benedict Gaster |
Publisher |
: Newnes |
Total Pages |
: 309 |
Release |
: 2012-11-13 |
ISBN-10 |
: 9780124058941 |
ISBN-13 |
: 0124058949 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Heterogeneous Computing with OpenCL by : Benedict Gaster
Heterogeneous Computing with OpenCL, Second Edition teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. It is the first textbook that presents OpenCL programming appropriate for the classroom and is intended to support a parallel programming course. Students will come away from this text with hands-on experience and significant knowledge of the syntax and use of OpenCL to address a range of fundamental parallel algorithms. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, Heterogeneous Computing with OpenCL explores memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. It includes detailed examples throughout, plus additional online exercises and other supporting materials that can be downloaded at http://www.heterogeneouscompute.org/?page_id=7 This book will appeal to software engineers, programmers, hardware engineers, and students/advanced students. Explains principles and strategies to learn parallel programming with OpenCL, from understanding the four abstraction models to thoroughly testing and debugging complete applications. Covers image processing, web plugins, particle simulations, video editing, performance optimization, and more. Shows how OpenCL maps to an example target architecture and explains some of the tradeoffs associated with mapping to various architectures Addresses a range of fundamental programming techniques, with multiple examples and case studies that demonstrate OpenCL extensions for a variety of hardware platforms
Author |
: Jason Sanders |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 524 |
Release |
: 2010-07-19 |
ISBN-10 |
: 9780132180139 |
ISBN-13 |
: 0132180138 |
Rating |
: 4/5 (39 Downloads) |
Synopsis CUDA by Example by : Jason Sanders
CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html
Author |
: David R. Kaeli |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 330 |
Release |
: 2015-06-18 |
ISBN-10 |
: 9780128016497 |
ISBN-13 |
: 0128016493 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Heterogeneous Computing with OpenCL 2.0 by : David R. Kaeli
Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more
Author |
: Janusz Kowalik |
Publisher |
: IOS Press |
Total Pages |
: 312 |
Release |
: 2012 |
ISBN-10 |
: 9781614990291 |
ISBN-13 |
: 1614990298 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Using OpenCL by : Janusz Kowalik
Author |
: David B. Kirk |
Publisher |
: Newnes |
Total Pages |
: 519 |
Release |
: 2012-12-31 |
ISBN-10 |
: 9780123914187 |
ISBN-13 |
: 0123914183 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Programming Massively Parallel Processors by : David B. Kirk
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Author |
: James Reinders |
Publisher |
: Apress |
Total Pages |
: 548 |
Release |
: 2020-11-19 |
ISBN-10 |
: 1484255739 |
ISBN-13 |
: 9781484255735 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Data Parallel C++ by : James Reinders
Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++.
Author |
: Simon Marlow |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 322 |
Release |
: 2013-07-12 |
ISBN-10 |
: 9781449335922 |
ISBN-13 |
: 1449335926 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Parallel and Concurrent Programming in Haskell by : Simon Marlow
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network