On The Tangent Space To The Space Of Algebraic Cycles On A Smooth Algebraic Variety Am 157
Download On The Tangent Space To The Space Of Algebraic Cycles On A Smooth Algebraic Variety Am 157 full books in PDF, epub, and Kindle. Read online free On The Tangent Space To The Space Of Algebraic Cycles On A Smooth Algebraic Variety Am 157 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Mark Green |
Publisher |
: Princeton University Press |
Total Pages |
: 207 |
Release |
: 2005-01-09 |
ISBN-10 |
: 9780691120447 |
ISBN-13 |
: 0691120447 |
Rating |
: 4/5 (47 Downloads) |
Synopsis On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) by : Mark Green
In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
Author |
: Mark Green |
Publisher |
: Princeton University Press |
Total Pages |
: 208 |
Release |
: 2004-12-20 |
ISBN-10 |
: 9781400837175 |
ISBN-13 |
: 1400837170 |
Rating |
: 4/5 (75 Downloads) |
Synopsis On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) by : Mark Green
In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
Author |
: |
Publisher |
: |
Total Pages |
: 892 |
Release |
: 2008 |
ISBN-10 |
: UOM:39015082440762 |
ISBN-13 |
: |
Rating |
: 4/5 (62 Downloads) |
Synopsis Mathematical Reviews by :
Author |
: Igor V. Dolgachev |
Publisher |
: Cambridge University Press |
Total Pages |
: 653 |
Release |
: 2012-08-16 |
ISBN-10 |
: 9781139560788 |
ISBN-13 |
: 1139560786 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Author |
: David Eisenbud |
Publisher |
: Cambridge University Press |
Total Pages |
: 633 |
Release |
: 2016-04-14 |
ISBN-10 |
: 9781107017085 |
ISBN-13 |
: 1107017084 |
Rating |
: 4/5 (85 Downloads) |
Synopsis 3264 and All That by : David Eisenbud
3264, the mathematical solution to a question concerning geometric figures.
Author |
: Bjorn Poonen |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 358 |
Release |
: 2017-12-13 |
ISBN-10 |
: 9781470437732 |
ISBN-13 |
: 1470437732 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Rational Points on Varieties by : Bjorn Poonen
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Author |
: Thomas Andrew Ivey |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 394 |
Release |
: 2003 |
ISBN-10 |
: 9780821833759 |
ISBN-13 |
: 0821833758 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Cartan for Beginners by : Thomas Andrew Ivey
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Author |
: Daniel Huybrechts |
Publisher |
: Cambridge University Press |
Total Pages |
: 499 |
Release |
: 2016-09-26 |
ISBN-10 |
: 9781316797259 |
ISBN-13 |
: 1316797252 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Author |
: Daniel Huybrechts |
Publisher |
: Cambridge University Press |
Total Pages |
: 345 |
Release |
: 2010-05-27 |
ISBN-10 |
: 9781139485821 |
ISBN-13 |
: 1139485822 |
Rating |
: 4/5 (21 Downloads) |
Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Author |
: Reza Akhtar |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 202 |
Release |
: 2010 |
ISBN-10 |
: 9780821851913 |
ISBN-13 |
: 0821851918 |
Rating |
: 4/5 (13 Downloads) |
Synopsis The Geometry of Algebraic Cycles by : Reza Akhtar
The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.