On The Differentiability Of Fuzzy Valued Mappings And The Stability Of A Fuzzy Differential Inclusion
Download On The Differentiability Of Fuzzy Valued Mappings And The Stability Of A Fuzzy Differential Inclusion full books in PDF, epub, and Kindle. Read online free On The Differentiability Of Fuzzy Valued Mappings And The Stability Of A Fuzzy Differential Inclusion ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Yurilev Chalco-Cano |
Publisher |
: |
Total Pages |
: 24 |
Release |
: 2001 |
ISBN-10 |
: UOM:39015058256713 |
ISBN-13 |
: |
Rating |
: 4/5 (13 Downloads) |
Synopsis On the Differentiability of Fuzzy-valued Mappings and the Stability of a Fuzzy Differential Inclusion by : Yurilev Chalco-Cano
Author |
: |
Publisher |
: |
Total Pages |
: 28 |
Release |
: 2002 |
ISBN-10 |
: UOM:39015060802207 |
ISBN-13 |
: |
Rating |
: 4/5 (07 Downloads) |
Synopsis On the Differentiability of Fuzzy-valued Mappings and the Stability of a Fuzzy Differential Equation by :
Author |
: Luciana Takata Gomes |
Publisher |
: Springer |
Total Pages |
: 130 |
Release |
: 2015-09-07 |
ISBN-10 |
: 9783319225753 |
ISBN-13 |
: 3319225758 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Fuzzy Differential Equations in Various Approaches by : Luciana Takata Gomes
This book may be used as reference for graduate students interested in fuzzy differential equations and researchers working in fuzzy sets and systems, dynamical systems, uncertainty analysis, and applications of uncertain dynamical systems. Beginning with a historical overview and introduction to fundamental notions of fuzzy sets, including different possibilities of fuzzy differentiation and metric spaces, this book moves on to an overview of fuzzy calculus thorough exposition and comparison of different approaches. Innovative theories of fuzzy calculus and fuzzy differential equations using fuzzy bunches of functions are introduced and explored. Launching with a brief review of essential theories, this book investigates both well-known and novel approaches in this field; such as the Hukuhara differentiability and its generalizations as well as differential inclusions and Zadeh’s extension. Through a unique analysis, results of all these theories are examined and compared.
Author |
: Didier Dubois |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 436 |
Release |
: 2008-10-01 |
ISBN-10 |
: 9783540850274 |
ISBN-13 |
: 3540850279 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Soft Methods for Handling Variability and Imprecision by : Didier Dubois
Probability theory has been the only well-founded theory of uncertainty for a long time. It was viewed either as a powerful tool for modelling random phenomena, or as a rational approach to the notion of degree of belief. During the last thirty years, in areas centered around decision theory, artificial intelligence and information processing, numerous approaches extending or orthogonal to the existing theory of probability and mathematical statistics have come to the front. The common feature of those attempts is to allow for softer or wider frameworks for taking into account the incompleteness or imprecision of information. Many of these approaches come down to blending interval or fuzzy interval analysis with probabilistic methods. This book gathers contributions to the 4th International Conference on Soft methods in Probability and Statistics. Its aim is to present recent results illustrating such new trends that enlarge the statistical and uncertainty modeling traditions, towards the handling of incomplete or subjective information. It covers a broad scope ranging from philosophical and mathematical underpinnings of new uncertainty theories, with a stress on their impact in the area of statistics and data analysis, to numerical methods and applications to environmental risk analysis and mechanical engineering. A unique feature of this collection is to establish a dialogue between fuzzy random variables and imprecise probability theories.
Author |
: Janusz Brzdęk |
Publisher |
: Springer Nature |
Total Pages |
: 515 |
Release |
: 2019-10-29 |
ISBN-10 |
: 9783030289720 |
ISBN-13 |
: 3030289729 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Ulam Type Stability by : Janusz Brzdęk
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
Author |
: |
Publisher |
: |
Total Pages |
: 542 |
Release |
: 1997 |
ISBN-10 |
: UOM:39015040398441 |
ISBN-13 |
: |
Rating |
: 4/5 (41 Downloads) |
Synopsis The Journal of Fuzzy Mathematics by :
Author |
: Tofigh Allahviranloo |
Publisher |
: Springer Nature |
Total Pages |
: 303 |
Release |
: 2020-06-15 |
ISBN-10 |
: 9783030512729 |
ISBN-13 |
: 303051272X |
Rating |
: 4/5 (29 Downloads) |
Synopsis Fuzzy Fractional Differential Operators and Equations by : Tofigh Allahviranloo
This book contains new and useful materials concerning fuzzy fractional differential and integral operators and their relationship. As the title of the book suggests, the fuzzy subject matter is one of the most important tools discussed. Therefore, it begins by providing a brief but important and new description of fuzzy sets and the computational calculus they require. Fuzzy fractals and fractional operators have a broad range of applications in the engineering, medical and economic sciences. Although these operators have been addressed briefly in previous papers, this book represents the first comprehensive collection of all relevant explanations. Most of the real problems in the biological and engineering sciences involve dynamic models, which are defined by fuzzy fractional operators in the form of fuzzy fractional initial value problems. Another important goal of this book is to solve these systems and analyze their solutions both theoretically and numerically. Given the content covered, the book will benefit all researchers and students in the mathematical and computer sciences, but also the engineering sciences.
Author |
: |
Publisher |
: |
Total Pages |
: 1884 |
Release |
: 2005 |
ISBN-10 |
: UVA:X006195258 |
ISBN-13 |
: |
Rating |
: 4/5 (58 Downloads) |
Synopsis Mathematical Reviews by :
Author |
: Barnabas Bede |
Publisher |
: Springer |
Total Pages |
: 281 |
Release |
: 2012-12-14 |
ISBN-10 |
: 9783642352218 |
ISBN-13 |
: 3642352219 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Mathematics of Fuzzy Sets and Fuzzy Logic by : Barnabas Bede
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates.
Author |
: V. Lakshmikantham |
Publisher |
: CRC Press |
Total Pages |
: 192 |
Release |
: 2004-11-23 |
ISBN-10 |
: 0203011384 |
ISBN-13 |
: 9780203011386 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Theory of Fuzzy Differential Equations and Inclusions by : V. Lakshmikantham
Fuzzy differential functions are applicable to real-world problems in engineering, computer science, and social science. That relevance makes for rapid development of new ideas and theories. This volume is a timely introduction to the subject that describes the current state of the theory of fuzzy differential equations and inclusions and provides a systematic account of recent developments. The chapters are presented in a clear and logical way and include the preliminary material for fuzzy set theory; a description of calculus for fuzzy functions, an investigation of the basic theory of fuzzy differential equations, and an introduction to fuzzy differential inclusions.