On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory

On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory
Author :
Publisher : Springer
Total Pages : 284
Release :
ISBN-10 : 9783319288086
ISBN-13 : 3319288083
Rating : 4/5 (86 Downloads)

Synopsis On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory by : Susanne Saminger-Platz

The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the field.

Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms

Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms
Author :
Publisher : Elsevier
Total Pages : 491
Release :
ISBN-10 : 9780080459530
ISBN-13 : 0080459536
Rating : 4/5 (30 Downloads)

Synopsis Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms by : Erich Peter Klement

This volume gives a state of the art of triangular norms which can be used for the generalization of several mathematical concepts, such as conjunction, metric, measure, etc. 16 chapters written by leading experts provide a state of the art overview of theory and applications of triangular norms and related operators in fuzzy logic, measure theory, probability theory, and probabilistic metric spaces.Key Features:- Complete state of the art of the importance of triangular norms in various mathematical fields- 16 self-contained chapters with extensive bibliographies cover both the theoretical background and many applications- Chapter authors are leading authorities in their fields- Triangular norms on different domains (including discrete, partially ordered) are described- Not only triangular norms but also related operators (aggregation operators, copulas) are covered- Book contains many enlightening illustrations· Complete state of the art of the importance of triangular norms in various mathematical fields· 16 self-contained chapters with extensive bibliographies cover both the theoretical background and many applications· Chapter authors are leading authorities in their fields· Triangular norms on different domains (including discrete, partially ordered) are described· Not only triangular norms but also related operators (aggregation operators, copulas) are covered· Book contains many enlightening illustrations

Mathematics of Fuzzy Sets

Mathematics of Fuzzy Sets
Author :
Publisher : Springer Science & Business Media
Total Pages : 732
Release :
ISBN-10 : 0792383885
ISBN-13 : 9780792383888
Rating : 4/5 (85 Downloads)

Synopsis Mathematics of Fuzzy Sets by : Ulrich Höhle

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.

Generalized Measure Theory

Generalized Measure Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 392
Release :
ISBN-10 : 9780387768526
ISBN-13 : 0387768521
Rating : 4/5 (26 Downloads)

Synopsis Generalized Measure Theory by : Zhenyuan Wang

Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.

Fuzzy Logic and Mathematics

Fuzzy Logic and Mathematics
Author :
Publisher : Oxford University Press
Total Pages : 545
Release :
ISBN-10 : 9780190200015
ISBN-13 : 0190200014
Rating : 4/5 (15 Downloads)

Synopsis Fuzzy Logic and Mathematics by : Radim Bělohlávek

The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.

Algebraizable Logics

Algebraizable Logics
Author :
Publisher : Advanced Reasoning Forum
Total Pages : 90
Release :
ISBN-10 : 9781938421181
ISBN-13 : 1938421183
Rating : 4/5 (81 Downloads)

Synopsis Algebraizable Logics by : W. J. Blok

W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in an automobile accident. Don Pigozzi (1935- ) grew up in Oakland, California, received his doctorate from the University of California, Berkeley in 1970, and was Professor of Mathematics at Iowa State University until his retirement in 2002. The Advanced Reasoning Forum is pleased to make available in its Classic Reprints series this exact reproduction of the 1989 text, with a new errata sheet prepared by Don Pigozzi.

On Intuitionistic Fuzzy Sets Theory

On Intuitionistic Fuzzy Sets Theory
Author :
Publisher : Springer
Total Pages : 328
Release :
ISBN-10 : 9783642291272
ISBN-13 : 3642291279
Rating : 4/5 (72 Downloads)

Synopsis On Intuitionistic Fuzzy Sets Theory by : Krassimir T. Atanassov

This book aims to be a comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author ́s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author ́s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.

A First Course in Fuzzy Logic

A First Course in Fuzzy Logic
Author :
Publisher : CRC Press
Total Pages : 459
Release :
ISBN-10 : 9780429012617
ISBN-13 : 0429012616
Rating : 4/5 (17 Downloads)

Synopsis A First Course in Fuzzy Logic by : Hung T. Nguyen

A First Course in Fuzzy Logic, Fourth Edition is an expanded version of the successful third edition. It provides a comprehensive introduction to the theory and applications of fuzzy logic. This popular text offers a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world applications. New in the Fourth Edition: Features new results on fuzzy sets of type-2 Provides more information on copulas for modeling dependence structures Includes quantum probability for uncertainty modeling in social sciences, especially in economics With its comprehensive updates, this new edition presents all the background necessary for students, instructors and professionals to begin using fuzzy logic in its many—applications in computer science, mathematics, statistics, and engineering. About the Authors: Hung T. Nguyen is a Professor Emeritus at the Department of Mathematical Sciences, New Mexico State University. He is also an Adjunct Professor of Economics at Chiang Mai University, Thailand. Carol L. Walker is also a Professor Emeritus at the Department of Mathematical Sciences, New Mexico State University. Elbert A. Walker is a Professor Emeritus, Department of Mathematical Sciences, New Mexico State University.

35 Years of Fuzzy Set Theory

35 Years of Fuzzy Set Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 296
Release :
ISBN-10 : 9783642166280
ISBN-13 : 3642166288
Rating : 4/5 (80 Downloads)

Synopsis 35 Years of Fuzzy Set Theory by : Chris Cornelis

This book is a tribute to Etienne E. Kerre on the occasion of his retirement on October 1st, 2010, after being active for 35 years in the field of fuzzy set theory. It gathers contributions from researchers that have been close to him in one way or another during his long and fruitful career. Besides a foreword by Lotfi A. Zadeh, it contains 13 chapters on both theoretical and applied topics in fuzzy set theory, divided in three parts: 1) logics and connectives, 2) data analysis, and 3) media applications. The first part deals with fuzzy logics and with operators on (extensions of) fuzzy sets. Part 2 deals with fuzzy methods in rough set theory, formal concept analysis, decision making and classification. The last part discusses the use of fuzzy methods for representing and manipulating media objects, such as images and text documents. The diversity of the topics that are covered reflect the diversity of Etienne's research interests, and indeed, the diversity of current research in the area of fuzzy set theory.

Fuzzy Set Theory — and Its Applications

Fuzzy Set Theory — and Its Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 408
Release :
ISBN-10 : 9789401579490
ISBN-13 : 9401579490
Rating : 4/5 (90 Downloads)

Synopsis Fuzzy Set Theory — and Its Applications by : Hans-Jürgen Zimmermann

Since its inception 20 years ago the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, robotics and others. Theoretical advances, too, have been made in many directions, and a gap has arisen between advanced theoretical topics and applications, which often use the theory at a rather elementary level. The primary goal of this book is to close this gap - to provide a textbook for courses in fuzzy set theory and a book that can be used as an introduction. This revised book updates the research agenda, with the chapters of possibility theory, fuzzy logic and approximate reasoning, expert systems and control, decision making and fuzzy set models in operations research being restructured and rewritten. Exercises have been added to almost all chapters and a teacher's manual is available upon request.