Oblique Derivative Problems for Elliptic Equations in Conical Domains

Oblique Derivative Problems for Elliptic Equations in Conical Domains
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 3031283821
ISBN-13 : 9783031283826
Rating : 4/5 (21 Downloads)

Synopsis Oblique Derivative Problems for Elliptic Equations in Conical Domains by : Mikhail Borsuk

The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.

Oblique Derivative Problems for Elliptic Equations in Conical Domains

Oblique Derivative Problems for Elliptic Equations in Conical Domains
Author :
Publisher : Springer Nature
Total Pages : 334
Release :
ISBN-10 : 9783031283819
ISBN-13 : 3031283813
Rating : 4/5 (19 Downloads)

Synopsis Oblique Derivative Problems for Elliptic Equations in Conical Domains by : Mikhail Borsuk

The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.

Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains

Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains
Author :
Publisher : Springer Science & Business Media
Total Pages : 223
Release :
ISBN-10 : 9783034604772
ISBN-13 : 3034604777
Rating : 4/5 (72 Downloads)

Synopsis Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains by : Mikhail Borsuk

This book investigates the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges, considering this problem both for linear and quasi-linear equations.

Nonlinear Elliptic and Parabolic Problems

Nonlinear Elliptic and Parabolic Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 531
Release :
ISBN-10 : 9783764373856
ISBN-13 : 3764373857
Rating : 4/5 (56 Downloads)

Synopsis Nonlinear Elliptic and Parabolic Problems by : Michel Chipot

Celebrates the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Containing 32 contributions, this volume covers a range of nonlinear elliptic and parabolic equations, with applications to natural sciences and engineering.

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations
Author :
Publisher : American Mathematical Soc.
Total Pages : 449
Release :
ISBN-10 : 9780821827277
ISBN-13 : 0821827278
Rating : 4/5 (77 Downloads)

Synopsis Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations by : Vladimir Kozlov

This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.

Oblique Derivative Problems for Elliptic Equations

Oblique Derivative Problems for Elliptic Equations
Author :
Publisher : World Scientific
Total Pages : 526
Release :
ISBN-10 : 9789814452335
ISBN-13 : 9814452335
Rating : 4/5 (35 Downloads)

Synopsis Oblique Derivative Problems for Elliptic Equations by : Gary M. Lieberman

This book gives an up-to-date exposition on the theory of oblique derivative problems for elliptic equations. The modern analysis of shock reflection was made possible by the theory of oblique derivative problems developed by the author. Such problems also arise in many other physical situations such as the shape of a capillary surface and problems of optimal transportation. The author begins the book with basic results for linear oblique derivative problems and work through the theory for quasilinear and nonlinear problems. The final chapter discusses some of the applications. In addition, notes to each chapter give a history of the topics in that chapter and suggestions for further reading.

Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains

Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains
Author :
Publisher : Springer
Total Pages : 343
Release :
ISBN-10 : 9783319146485
ISBN-13 : 3319146483
Rating : 4/5 (85 Downloads)

Synopsis Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains by : Mikhail S. Agranovich

This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.

Elliptic Equations in Polyhedral Domains

Elliptic Equations in Polyhedral Domains
Author :
Publisher : American Mathematical Soc.
Total Pages : 618
Release :
ISBN-10 : 9780821849835
ISBN-13 : 0821849832
Rating : 4/5 (35 Downloads)

Synopsis Elliptic Equations in Polyhedral Domains by : V. G. Maz_i_a

This is the first monograph which systematically treats elliptic boundary value problems in domains of polyhedral type. The authors mainly describe their own recent results focusing on the Dirichlet problem for linear strongly elliptic systems of arbitrary order, Neumann and mixed boundary value problems for second order systems, and on boundary value problems for the stationary Stokes and Navier-Stokes systems. A feature of the book is the systematic use of Green's matrices. Using estimates for the elements of these matrices, the authors obtain solvability and regularity theorems for the solutions in weighted and non-weighted Sobolev and Holder spaces. Some classical problems of mathematical physics (Laplace and biharmonic equations, Lame system) are considered as examples. Furthermore, the book contains maximum modulus estimates for the solutions and their derivatives. The exposition is self-contained, and an introductory chapter provides background material on the theory of elliptic boundary value problems in domains with smooth boundaries and in domains with conical points. The book is destined for graduate students and researchers working in elliptic partial differential equations and applications.

Current Trends in Analysis and Its Applications

Current Trends in Analysis and Its Applications
Author :
Publisher : Birkhäuser
Total Pages : 842
Release :
ISBN-10 : 9783319125770
ISBN-13 : 331912577X
Rating : 4/5 (70 Downloads)

Synopsis Current Trends in Analysis and Its Applications by : Vladimir V. Mityushev

This book is a collection of papers from the 9th International ISAAC Congress held in 2013 in Kraków, Poland. The papers are devoted to recent results in mathematics, focused on analysis and a wide range of its applications. These include up-to-date findings of the following topics: - Differential Equations: Complex and Functional Analytic Methods - Nonlinear PDE - Qualitative Properties of Evolution Models - Differential and Difference Equations - Toeplitz Operators - Wavelet Theory - Topological and Geometrical Methods of Analysis - Queueing Theory and Performance Evaluation of Computer Networks - Clifford and Quaternion Analysis - Fixed Point Theory - M-Frame Constructions - Spaces of Differentiable Functions of Several Real Variables Generalized Functions - Analytic Methods in Complex Geometry - Topological and Geometrical Methods of Analysis - Integral Transforms and Reproducing Kernels - Didactical Approaches to Mathematical Thinking Their wide applications in biomathematics, mechanics, queueing models, scattering, geomechanics etc. are presented in a concise, but comprehensible way, such that further ramifications and future directions can be immediately seen.