Numerical Modeling of the Characteristic Seismic Behavior of Retaining Walls

Numerical Modeling of the Characteristic Seismic Behavior of Retaining Walls
Author :
Publisher :
Total Pages : 228
Release :
ISBN-10 : OCLC:869756830
ISBN-13 :
Rating : 4/5 (30 Downloads)

Synopsis Numerical Modeling of the Characteristic Seismic Behavior of Retaining Walls by : Graziella Sebaaly

Since the damage caused to retaining walls during past earthquakes are common, the behavior of such earth retaining structures has attracted the attention of researchers and practicing engineers. In this thesis, dynamic response of retaining walls is being studied using numerical method. The numerical analysis was undertaken using FLAC3D (Fast Lagrangian Analysis of Continua) along with FISH functions, which use a programming language embedded within FLAC3D. The FLAC family of programs have found wide use and acceptance among the geotechnical community because of its capability of modeling important aspects such as stress-dependent constitutive model, hysteretic nature non-linear stress-strain behavior and soil damping under dynamic loading, separation and slippage of soil at interface between soil an structure (i.e., interface elements), and incorporation of quiet lateral boundaries. More importantly, the FISH functions extend FLAC3D's usefulness since geotechnical applications often require reset and modification of stresses, strength and modulus properties during the execution of the program. Such requirements are needed to model failure, reset of initial condition prior to dynamic loading etc. As a baseline case, modeling of active and passive earth pressure were conducted and computed results were compared with those available from classical methods. The active and passive cases were modeled using a rigid wall under displacement control. The numerical model predictions for the passive and active pressures for various soil-wall friction angles were in good agreement with the available classical solutions. Retaining structures considered include a fixed end cantilever wall, flexible diaphragm wall and a gravity wall supporting a dry medium dense cohesionless soil. The fixed end cantilever wall allows for a closer inspection of the mechanism of interaction between the wall and backfill. The static analyses consisted of the stage-by-stage incremental construction of the wall using elastic-plastic backfill material modeled using stress-dependent incrementally elastic stiffness properties. Dynamic analysis followed the static analyses where the soil was modeled using non-linear stress-strain relationship along the Masing criteria for unloading and reloading. Particular attention has been devoted to physical modeling issues, use of appropriate soil constitutive relations and selection of ground excitations. Under sinusoidal motion, the dynamic characteristic behavior of the fixed cantilever wall and the gravity wall were clearly captured. The dynamic displacement of the fixed cantilever wall was found to always be outward from the backfill. The bending moments increased steadily. In the case of flexible walls, the residual bending moments at the end of excitation were substantially higher than the initial values. The effect of the flexibility of the wall and the effect of the integration of the Finn model for permanent volumetric strain in the constitutive model on the dynamic behavior of the cantilever wall were investigated. For the gravity wall, the movement of the wall was progressively away from the backfill and the gravity wall ends up with a permanent outward lateral movement and tilt. The results obtained with FLAC3D in terms of displacements and bending moments (in the case of flexible wall) were reported for different levels of excitation from four different past earthquakes of magnitude between 6.5 and 7.

Experimental and Numerical Modeling of Seismic Earth Pressures on Retaining Walls with Cohesive Backfills

Experimental and Numerical Modeling of Seismic Earth Pressures on Retaining Walls with Cohesive Backfills
Author :
Publisher :
Total Pages : 172
Release :
ISBN-10 : OCLC:904238655
ISBN-13 :
Rating : 4/5 (55 Downloads)

Synopsis Experimental and Numerical Modeling of Seismic Earth Pressures on Retaining Walls with Cohesive Backfills by : GABRIEL ALFONSO. CANDIA

Observations from recent earthquakes show that all types of retaining structures with non-liquefiable backfills perform very well and there is limited evidence of damage or failures related to seismic earth pressures. Even retaining structures designed only for static loading have performed well during strong ground motions suggesting that special seismic design provisions may not be required in some cases. The objective of this study was to characterize the seismic interaction of backfill-wall systems using experimental and numerical models, with emphasis on cohesive soils, and to review the basic assumptions of current design methods. In the experimental phase of this research, two sets of centrifuge models were conducted at the Center for Geotechnical modeling in UC Davis. The first experiment consisted of a basement wall and a freestanding cantilever wall with level backfill, while the second one consists of a cantilever wall with sloping backfill. The soil used in the experiments was a compacted low plasticity clay. Numerical simulations were performed using FLAC2-D code, featuring non-linear constitutive relationships for the soil and interface elements. The non-linear hysteretic constitutive UBCHYST was used to model the level ground experiment and Mohr-Coulomb with hysteretic damping was used to model the sloping backfill experiment. The simulations captured the most important aspects of the seismic responses, including the ground motion propagation and the dynamic soil-structure interaction. Special attention was given to the treatment of boundary conditions and the selection of the model parameters. The results from the experimental and numerical analysis provide information to guide the designers in selecting seismic design loads on retaining structures with cohesive backfills. The experimental results show that the static and seismic earth pressures increase linearly with depth and that the resultant acts at 0.35H-0.4H, as opposed to 0.5-0.6H assumed in current engineering practice. In addition, the observed seismic loads are a function of the ground motion intensity, the wall type and backfill geometry. In general, the total seismic load can be expressed using Seed and Whitman's (1970) notation as: Pae=Pa+dPae, where Pa is the static load and dPae is the dynamic load increment. While the static load is a function of the backfill strength, previous stress history and compaction method, the dynamic load increment is a function of the free field PGA, the wall displacements, and is relatively independent of cohesion. In level ground, the dynamic load coefficient can be expressed as dKae=1/2gH2(0.68PGAff/g) for basement walls and dKae=1/2gH2(0.42PGAff/g) for cantilever walls; these results are consistent with similar experiments performed in cohesionless soils (Mikola & Sitar, 2013. In the sloping ground experiment the seismic coefficient came out to dKae=1/2gH2(0.7PGAff/g), which is consistent with Okabe's (1926) Coulomb wedge analysis of the problem. However, that slope was stable under gravity loads even without the presence of the retaining wall (FS=1.4). Measured slope displacements were very small and in reasonable good agreement with the predictions made with the Bray and Travasarou (2007) semi-empirical method. The experimental data was not sufficient to determine accurately the point of action of the seismic loads. However, the numerical simulations and Okabe's (1926) limit state theory suggest that the resultant acts between 0.37H-0.40H for typical values of cohesion. While the resultant acts at a point higher than 0.33H with increasing cohesion, the total seismic moment is reduced due to the significant reduction in the total load Pae, particularly for large ground accelerations. The results also show that typical retaining walls designed with a static factor of safety of 1.5 have enough strength capacity to resist ground accelerations up to 0.4g. This observation is consistent with the field performance of retaining walls as documented by Clough and Fragaszy (1977) and the experimental results by al Atik and Sitar (2010) and Geraili and Sitar (2013). The evaluation of earth pressures at the wall-backfill interface continues to be a technical challenge. Identified sources of error in the present study include the behavior of pressure sensors, the geometric and mass asymmetry of the model and the dynamic interaction between the model and the container. While these centrifuge experiments reproduced the basic response of prototype models, ultimately, instrumented full-scale structures are most essential to fully characterize the response of tall walls and deep basements with varieties of backfill.

Numerical Models in Geomechanics

Numerical Models in Geomechanics
Author :
Publisher : CRC Press
Total Pages : 760
Release :
ISBN-10 : 905809636X
ISBN-13 : 9789058096364
Rating : 4/5 (6X Downloads)

Synopsis Numerical Models in Geomechanics by : G.N. Pande

Reflecting the current research and advances made in the application of numerical methods in geotechnical engineering, this volume details proceedings of the Ninth International Symposium on 'Numerical Models in Geomechanics - NUMOG IX' held in Ottawa, Canada, 25-27 August 2004. Highlighting a number of new developments in the area, papers concentrate upon the following four main areas: * constitutive relations for geomaterials * numerical algorithms: formulation and performance * modelling of transient, coupled and dynamic problems * application of numerical techniques to practical problems. Representing the most advanced, modern findings in the field, Numerical Models in Geomechanics is a comprehensive and impeccably-researched text, ideal for students and researchers as well as practising engineers.

Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments

Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments
Author :
Publisher : Transportation Research Board
Total Pages : 148
Release :
ISBN-10 : 9780309117654
ISBN-13 : 0309117658
Rating : 4/5 (54 Downloads)

Synopsis Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments by : Donald G. Anderson

This report explores analytical and design methods for the seismic design of retaining walls, buried structures, slopes, and embankments. The Final Report is organized into two volumes. NCHRP Report 611 is Volume 1 of this study. Volume 2, which is only available online, presents the proposed specifications, commentaries, and example problems for the retaining walls, slopes and embankments, and buried structures.

Numerical Methods in Geotechnical Engineering IX, Volume 1

Numerical Methods in Geotechnical Engineering IX, Volume 1
Author :
Publisher : CRC Press
Total Pages : 935
Release :
ISBN-10 : 9780429823190
ISBN-13 : 0429823193
Rating : 4/5 (90 Downloads)

Synopsis Numerical Methods in Geotechnical Engineering IX, Volume 1 by : Manuel de Matos Fernandes

NUMGE 2018 is the ninth in a series of conferences on Numerical Methods in Geotechnical Engineering organized by the ERTC7 under the auspices of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The first conference was held in 1986 in Stuttgart, Germany and the series continued every four years (1990 Santander, Spain; 1994 Manchester, United Kingdom; 1998 Udine, Italy; 2002 Paris, France; 2006 Graz, Austria; 2010 Trondheim, Norway; 2014 Delft, The Netherlands). The conference provides a forum for exchange of ideas and discussion on topics related to numerical modelling in geotechnical engineering. Both senior and young researchers, as well as scientists and engineers from Europe and overseas, are invited to attend this conference to share and exchange their knowledge and experiences. This work is the first volume of NUMGE 2018.

Proceedings of the Second International Conference on Press-in Engineering 2021, Kochi, Japan

Proceedings of the Second International Conference on Press-in Engineering 2021, Kochi, Japan
Author :
Publisher : CRC Press
Total Pages : 621
Release :
ISBN-10 : 9781000456486
ISBN-13 : 100045648X
Rating : 4/5 (86 Downloads)

Synopsis Proceedings of the Second International Conference on Press-in Engineering 2021, Kochi, Japan by : Tatsunori Matsumoto

The Second International Conference on Press-in Engineering (ICPE) 2021 was organized by the International Press-in Association (IPA). The conference is held every three years and the main theme this time is "Evolution and Social Contribution of Press-in Engineering for Infrastructure Development, and Disaster Prevention and Mitigation". These proceedings contain 2 keynote lectures, 3 state-of-the-art lectures and about 60 papers from more than 10 countries. This publication provides good practice guidance on the application of the press-in piling method, to satisfy the requirements of geo-structures which are embedded utilizing prefabricated piles. It covers actual examples of the press-in piling method applied to various geo-structures, such as temporary and permanent retaining walls, cofferdams, cut-off walls, foundation piles etc. The content addresses the technical and construction issues relating to the selection of the appropriate type of press-in piling method, in accordance with required structural design criteria and soil and working conditions. The aim of this publication is to concisely describe practical uses of the press-in piling method for project owners, designers, contractors, academic researchers and other people in the construction industry.

Recent Advances in Earthquake Engineering

Recent Advances in Earthquake Engineering
Author :
Publisher : Springer Nature
Total Pages : 528
Release :
ISBN-10 : 9789811646171
ISBN-13 : 9811646171
Rating : 4/5 (71 Downloads)

Synopsis Recent Advances in Earthquake Engineering by : Sreevalsa Kolathayar

This book presents the select proceedings of the Virtual Conference on Disaster Risk Reduction (VCDRR 2021). It emphasizes on the role of civil engineering for a disaster-resilient society. It presents latest research in geohazards and their mitigation. Various topics covered in this book are earthquake hazard, seismic response of structures and earthquake risk. This book is a comprehensive volume on disaster risk reduction (DRR) and its management for a sustainable built environment. This book will be useful for the students, researchers, policy makers and professionals working in the area of civil engineering and earthquake engineering.

Physical Modelling in Geotechnics, Two Volume Set

Physical Modelling in Geotechnics, Two Volume Set
Author :
Publisher : CRC Press
Total Pages : 1530
Release :
ISBN-10 : 9780415592888
ISBN-13 : 0415592887
Rating : 4/5 (88 Downloads)

Synopsis Physical Modelling in Geotechnics, Two Volume Set by : Sarah Springman

This book results from the 7th ICPMG meeting in Zurich 2010 and covers a broad range of aspects of physical modelling in geotechnics, linking across to other modelling techniques to consider the entire spectrum required in providing innovative geotechnical engineering solutions. Topics presented at the conference: Soil – Structure – Interaction; Natural Hazards; Earthquake Engineering: Soft Soil Engineering; New Geotechnical Physical; Modelling Facilities; Advanced Experimental Techniques; Comparisons between Physical and Numerical Modelling Specific Topics: Offshore Engineering; Ground Improvement and Foundations; Tunnelling, Excavations and Retaining Structures; Dams and slopes; Process Modelling; Goenvironmental Modelling; Education