Numerical Methods for the Solution of Ill-Posed Problems

Numerical Methods for the Solution of Ill-Posed Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 257
Release :
ISBN-10 : 9789401584807
ISBN-13 : 940158480X
Rating : 4/5 (07 Downloads)

Synopsis Numerical Methods for the Solution of Ill-Posed Problems by : A.N. Tikhonov

Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics
Author :
Publisher : Walter de Gruyter
Total Pages : 453
Release :
ISBN-10 : 9783110205794
ISBN-13 : 3110205793
Rating : 4/5 (94 Downloads)

Synopsis Numerical Methods for Solving Inverse Problems of Mathematical Physics by : A. A. Samarskii

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

Ill-Posed Problems: Theory and Applications

Ill-Posed Problems: Theory and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 9789401110266
ISBN-13 : 9401110263
Rating : 4/5 (66 Downloads)

Synopsis Ill-Posed Problems: Theory and Applications by : A. Bakushinsky

Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.

Regularization Algorithms for Ill-Posed Problems

Regularization Algorithms for Ill-Posed Problems
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 447
Release :
ISBN-10 : 9783110556384
ISBN-13 : 3110556383
Rating : 4/5 (84 Downloads)

Synopsis Regularization Algorithms for Ill-Posed Problems by : Anatoly B. Bakushinsky

This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems

Methods for Solving Incorrectly Posed Problems

Methods for Solving Incorrectly Posed Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 275
Release :
ISBN-10 : 9781461252801
ISBN-13 : 1461252806
Rating : 4/5 (01 Downloads)

Synopsis Methods for Solving Incorrectly Posed Problems by : V.A. Morozov

Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f € F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ("sol vabi li ty" condition); (2) The equality AU = AU for any u ,u € DA implies the I 2 l 2 equality u = u ("uniqueness" condition); l 2 (3) The inverse operator A-I is continuous on F ("stability" condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any "ill-posed" (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Author :
Publisher : SIAM
Total Pages : 195
Release :
ISBN-10 : 9780898717570
ISBN-13 : 0898717574
Rating : 4/5 (70 Downloads)

Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Iterative Methods for Ill-posed Problems

Iterative Methods for Ill-posed Problems
Author :
Publisher : Walter de Gruyter
Total Pages : 153
Release :
ISBN-10 : 9783110250640
ISBN-13 : 3110250640
Rating : 4/5 (40 Downloads)

Synopsis Iterative Methods for Ill-posed Problems by : Anatoly B. Bakushinsky

Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.

Numerical Methods for Inverse Problems

Numerical Methods for Inverse Problems
Author :
Publisher : John Wiley & Sons
Total Pages : 232
Release :
ISBN-10 : 9781848218185
ISBN-13 : 1848218184
Rating : 4/5 (85 Downloads)

Synopsis Numerical Methods for Inverse Problems by : Michel Kern

This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.

Numerical Regularization for Atmospheric Inverse Problems

Numerical Regularization for Atmospheric Inverse Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9783642054396
ISBN-13 : 3642054390
Rating : 4/5 (96 Downloads)

Synopsis Numerical Regularization for Atmospheric Inverse Problems by : Adrian Doicu

The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.

Surveys on Solution Methods for Inverse Problems

Surveys on Solution Methods for Inverse Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 3211834702
ISBN-13 : 9783211834701
Rating : 4/5 (02 Downloads)

Synopsis Surveys on Solution Methods for Inverse Problems by : David Colton

Inverse problems are concerned with determining causes for observed or desired effects. Problems of this type appear in many application fields both in science and in engineering. The mathematical modelling of inverse problems usually leads to ill-posed problems, i.e., problems where solutions need not exist, need not be unique or may depend discontinuously on the data. For this reason, numerical methods for solving inverse problems are especially difficult, special methods have to be developed which are known under the term "regularization methods". This volume contains twelve survey papers about solution methods for inverse and ill-posed problems and about their application to specific types of inverse problems, e.g., in scattering theory, in tomography and medical applications, in geophysics and in image processing. The papers have been written by leading experts in the field and provide an up-to-date account of solution methods for inverse problems.