Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 356
Release :
ISBN-10 : 0898717833
ISBN-13 : 9780898717839
Rating : 4/5 (33 Downloads)

Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 272
Release :
ISBN-10 : 9781118164525
ISBN-13 : 1118164520
Rating : 4/5 (25 Downloads)

Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Author :
Publisher : SIAM
Total Pages : 537
Release :
ISBN-10 : 9780898715347
ISBN-13 : 0898715342
Rating : 4/5 (47 Downloads)

Synopsis Iterative Methods for Sparse Linear Systems by : Yousef Saad

Mathematics of Computing -- General.

Iterative Solution of Large Linear Systems

Iterative Solution of Large Linear Systems
Author :
Publisher : Elsevier
Total Pages : 599
Release :
ISBN-10 : 9781483274133
ISBN-13 : 1483274136
Rating : 4/5 (33 Downloads)

Synopsis Iterative Solution of Large Linear Systems by : David M. Young

Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.

Differential Equations with Graphical and Numerical Methods

Differential Equations with Graphical and Numerical Methods
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0130843768
ISBN-13 : 9780130843760
Rating : 4/5 (68 Downloads)

Synopsis Differential Equations with Graphical and Numerical Methods by : Bernard W. Banks

This book presents analytical, graphical and numerical methods in a unified way—as methods of solution and as means of illuminating concepts. Numerical methods are introduced in the first chapter, interpreted in the light of graphics, and provide the core theme around which the first seven chapters revolve. These chapter titles are: The First Order Equationy = f(x,y); First Order Systems Introduction; Higher Order Linear Equations; First Order Systems — Linear Methods; Series Methods and Famous Functions; and Bifurcations and Chaos. The other three chapters cover the laplace transform; partial differential equations and fourier series; and the finite differences method. A unique combination of the traditional topics of differential equations and computer graphics, for anyone interested in taking advantage of this learning package.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method
Author :
Publisher : Courier Corporation
Total Pages : 290
Release :
ISBN-10 : 9780486131597
ISBN-13 : 0486131599
Rating : 4/5 (97 Downloads)

Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.