Norm Derivatives and Characterizations of Inner Product Spaces

Norm Derivatives and Characterizations of Inner Product Spaces
Author :
Publisher : World Scientific
Total Pages : 199
Release :
ISBN-10 : 9789814287272
ISBN-13 : 981428727X
Rating : 4/5 (72 Downloads)

Synopsis Norm Derivatives and Characterizations of Inner Product Spaces by : Claudi Alsina

1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.

Characterizations of Inner Product Spaces

Characterizations of Inner Product Spaces
Author :
Publisher : Birkhäuser
Total Pages : 205
Release :
ISBN-10 : 9783034854870
ISBN-13 : 3034854870
Rating : 4/5 (70 Downloads)

Synopsis Characterizations of Inner Product Spaces by : Amir

Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =

Ulam Type Stability

Ulam Type Stability
Author :
Publisher : Springer Nature
Total Pages : 515
Release :
ISBN-10 : 9783030289720
ISBN-13 : 3030289729
Rating : 4/5 (20 Downloads)

Synopsis Ulam Type Stability by : Janusz Brzdęk

This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.

Operator and Norm Inequalities and Related Topics

Operator and Norm Inequalities and Related Topics
Author :
Publisher : Springer Nature
Total Pages : 822
Release :
ISBN-10 : 9783031021046
ISBN-13 : 3031021045
Rating : 4/5 (46 Downloads)

Synopsis Operator and Norm Inequalities and Related Topics by : Richard M. Aron

Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.

Semi-inner Products and Applications

Semi-inner Products and Applications
Author :
Publisher : Nova Biomedical Books
Total Pages : 240
Release :
ISBN-10 : UVA:X004746493
ISBN-13 :
Rating : 4/5 (93 Downloads)

Synopsis Semi-inner Products and Applications by : Sever Silvestru Dragomir

Semi-inner products, that can be naturally defined in general Banach spaces over the real or complex number field, play an important role in describing the geometric properties of these spaces. This new book dedicates 17 chapters to the study of semi-inner products and its applications. The bibliography at the end of each chapter contains a list of the papers cited in the chapter. The interested reader may find more information on the subject by consulting the list of papers provided at the end of the work. The book is intended for use by both researchers and postgraduate students interested in functional analysis. It also provides helpful tools to mathematicians using functional analysis in other domains such as: linear and non-linear operator theory, optimization theory, game theory or other related fields.

Mathematical Analysis and Applications

Mathematical Analysis and Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 1021
Release :
ISBN-10 : 9781119414339
ISBN-13 : 1119414334
Rating : 4/5 (39 Downloads)

Synopsis Mathematical Analysis and Applications by : Michael Ruzhansky

An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.

Functional Equations in Mathematical Analysis

Functional Equations in Mathematical Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 744
Release :
ISBN-10 : 9781461400554
ISBN-13 : 1461400554
Rating : 4/5 (54 Downloads)

Synopsis Functional Equations in Mathematical Analysis by : Themistocles M. Rassias

The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research. This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics. "Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.

Surveys in Geometry I

Surveys in Geometry I
Author :
Publisher : Springer Nature
Total Pages : 469
Release :
ISBN-10 : 9783030866952
ISBN-13 : 3030866955
Rating : 4/5 (52 Downloads)

Synopsis Surveys in Geometry I by : Athanase Papadopoulos

The volume consists of a set of surveys on geometry in the broad sense. The goal is to present a certain number of research topics in a non-technical and appealing manner. The topics surveyed include spherical geometry, the geometry of finite-dimensional normed spaces, metric geometry (Bishop—Gromov type inequalities in Gromov-hyperbolic spaces), convexity theory and inequalities involving volumes and mixed volumes of convex bodies, 4-dimensional topology, Teichmüller spaces and mapping class groups actions, translation surfaces and their dynamics, and complex higher-dimensional geometry. Several chapters are based on lectures given by their authors to middle-advanced level students and young researchers. The whole book is intended to be an introduction to current research trends in geometry.

Functional Equations On Groups

Functional Equations On Groups
Author :
Publisher : World Scientific
Total Pages : 395
Release :
ISBN-10 : 9789814513142
ISBN-13 : 9814513148
Rating : 4/5 (42 Downloads)

Synopsis Functional Equations On Groups by : Henrik Stetkaer

This volume provides an accessible and coherent introduction to some of the scientific progress on functional equations on groups in the last two decades. It presents the latest methods of treating the topic and contains new and transparent proofs. Its scope extends from the classical functional equations on the real line to those on groups, in particular, non-abelian groups. This volume presents, in careful detail, a number of illustrative examples like the cosine equation on the Heisenberg group and on the group SL(2, ℝ). Some of the examples are not even seen in existing monographs. Thus, it is an essential source of reference for further investigations.

Convexity from the Geometric Point of View

Convexity from the Geometric Point of View
Author :
Publisher : Springer Nature
Total Pages : 1195
Release :
ISBN-10 : 9783031505072
ISBN-13 : 3031505077
Rating : 4/5 (72 Downloads)

Synopsis Convexity from the Geometric Point of View by : Vitor Balestro