Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations

Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations
Author :
Publisher : CRC Press
Total Pages : 405
Release :
ISBN-10 : 9781439854853
ISBN-13 : 1439854858
Rating : 4/5 (53 Downloads)

Synopsis Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations by : M.D.S. Aliyu

A comprehensive overview of nonlinear H∞ control theory for both continuous-time and discrete-time systems, Nonlinear H∞-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear H∞-control, nonlinear H∞ -filtering, mixed H2/ H∞-nonlinear control and filtering, nonlinear H∞-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the H∞-control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H∞-Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.

Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations

Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations
Author :
Publisher : CRC Press
Total Pages : 405
Release :
ISBN-10 : 1138072753
ISBN-13 : 9781138072756
Rating : 4/5 (53 Downloads)

Synopsis Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations by : S. Aliyu

A comprehensive overview of nonlinear H� control theory for both continuous-time and discrete-time systems, Nonlinear H�-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear H�-control, nonlinear H � -filtering, mixed H2/ H�-nonlinear control and filtering, nonlinear H�-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the H�-control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H�-Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.

Nonlinear H2/H-Infinity Constrained Feedback Control

Nonlinear H2/H-Infinity Constrained Feedback Control
Author :
Publisher : Springer Science & Business Media
Total Pages : 218
Release :
ISBN-10 : 9781846283505
ISBN-13 : 1846283507
Rating : 4/5 (05 Downloads)

Synopsis Nonlinear H2/H-Infinity Constrained Feedback Control by : Murad Abu-Khalaf

This book provides techniques to produce robust, stable and useable solutions to problems of H-infinity and H2 control in high-performance, non-linear systems for the first time. The book is of importance to control designers working in a variety of industrial systems. Case studies are given and the design of nonlinear control systems of the same caliber as those obtained in recent years using linear optimal and bounded-norm designs is explained.

Extending H-infinity Control to Nonlinear Systems

Extending H-infinity Control to Nonlinear Systems
Author :
Publisher : SIAM
Total Pages : 355
Release :
ISBN-10 : 0898719844
ISBN-13 : 9780898719840
Rating : 4/5 (44 Downloads)

Synopsis Extending H-infinity Control to Nonlinear Systems by : J. William Helton

H-infinity control originated from an effort to codify classical control methods, where one shapes frequency response functions for linear systems to meet certain objectives. H-infinity control underwent tremendous development in the 1980s and made considerable strides toward systematizing classical control. This book addresses the next major issue of how this extends to nonlinear systems. At the core of nonlinear control theory lie two partial differential equations (PDEs). One is a first-order evolution equation called the information state equation, which constitutes the dynamics of the controller. One can view this equation as a nonlinear dynamical system. Much of this volume is concerned with basic properties of this system, such as the nature of trajectories, stability, and, most important, how it leads to a general solution of the nonlinear H-infinity control problem.

Hamilton-Jacobi-Bellman Equations

Hamilton-Jacobi-Bellman Equations
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 210
Release :
ISBN-10 : 9783110543599
ISBN-13 : 3110543591
Rating : 4/5 (99 Downloads)

Synopsis Hamilton-Jacobi-Bellman Equations by : Dante Kalise

Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme

L2-Gain and Passivity Techniques in Nonlinear Control

L2-Gain and Passivity Techniques in Nonlinear Control
Author :
Publisher : Springer
Total Pages : 334
Release :
ISBN-10 : 9783319499925
ISBN-13 : 3319499920
Rating : 4/5 (25 Downloads)

Synopsis L2-Gain and Passivity Techniques in Nonlinear Control by : Arjan van der Schaft

This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization of stabilizing controllers, is demonstrated. The nonlinear H-infinity optimal control problem is also treated and the book concludes with a geometric analysis of the solution sets of Hamilton-Jacobi inequalities and their relation with Riccati inequalities for the linearization. · L2-Gain and Passivity Techniques in Nonlinear Control (third edition) is thoroughly updated, revised, reorganized and expanded. Among the changes, readers will find: · updated and extended coverage of dissipative systems theory · substantial new material regarding converse passivity theorems and incremental/shifted passivity · coverage of recent developments on networks of passive systems with examples · a completely overhauled and succinct introduction to modeling and control of port-Hamiltonian systems, followed by an exposition of port-Hamiltonian formulation of physical network dynamics · updated treatment of all-pass factorization of nonlinear systems The book provides graduate students and researchers in systems and control with a compact presentation of a fundamental and rapidly developing area of nonlinear control theory, illustrated by a broad range of relevant examples stemming from different application areas.

Max-Plus Methods for Nonlinear Control and Estimation

Max-Plus Methods for Nonlinear Control and Estimation
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 0817635343
ISBN-13 : 9780817635343
Rating : 4/5 (43 Downloads)

Synopsis Max-Plus Methods for Nonlinear Control and Estimation by : William M. McEneaney

The central focus of this book is the control of continuous-time/continuous-space nonlinear systems. Using new techniques that employ the max-plus algebra, the author addresses several classes of nonlinear control problems, including nonlinear optimal control problems and nonlinear robust/H-infinity control and estimation problems. Several numerical techniques are employed, including a max-plus eigenvector approach and an approach that avoids the curse-of-dimensionality. The max-plus-based methods examined in this work belong to an entirely new class of numerical methods for the solution of nonlinear control problems and their associated Hamilton–Jacobi–Bellman (HJB) PDEs; these methods are not equivalent to either of the more commonly used finite element or characteristic approaches. Max-Plus Methods for Nonlinear Control and Estimation will be of interest to applied mathematicians, engineers, and graduate students interested in the control of nonlinear systems through the implementation of recently developed numerical methods.