Nonlinear Equations for Beams and Degenerate Plates with Piers

Nonlinear Equations for Beams and Degenerate Plates with Piers
Author :
Publisher : Springer Nature
Total Pages : 115
Release :
ISBN-10 : 9783030302184
ISBN-13 : 3030302180
Rating : 4/5 (84 Downloads)

Synopsis Nonlinear Equations for Beams and Degenerate Plates with Piers by : Maurizio Garrione

This book develops a full theory for hinged beams and degenerate plates with multiple intermediate piers with the final purpose of understanding the stability of suspension bridges. New models are proposed and new tools are provided for the stability analysis. The book opens by deriving the PDE’s based on the physical models and by introducing the basic framework for the linear stationary problem. The linear analysis, in particular the behavior of the eigenvalues as the position of the piers varies, enables the authors to tackle the stability issue for some nonlinear evolution beam equations, with the aim of determining the “best position” of the piers within the beam in order to maximize its stability. The study continues with the analysis of a class of degenerate plate models. The torsional instability of the structure is investigated, and again, the optimal position of the piers in terms of stability is discussed. The stability analysis is carried out by means of both analytical tools and numerical experiments. Several open problems and possible future developments are presented. The qualitative analysis provided in the book should be seen as the starting point for a precise quantitative study of more complete models, taking into account the action of aerodynamic forces. This book is intended for a two-fold audience. It is addressed both to mathematicians working in the field of Differential Equations, Nonlinear Analysis and Mathematical Physics, due to the rich number of challenging mathematical questions which are discussed and left as open problems, and to Engineers interested in mechanical structures, since it provides the theoretical basis to deal with models for the dynamics of suspension bridges with intermediate piers. More generally, it may be enjoyable for readers who are interested in the application of Mathematics to real life problems.

A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells

A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : 9781118649916
ISBN-13 : 1118649915
Rating : 4/5 (16 Downloads)

Synopsis A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells by : Hui-Shen Shen

The capability to predict the nonlinear response of beams, plates and shells when subjected to thermal and mechanical loads is of prime interest to structural analysis. In fact, many structures are subjected to high load levels that may result in nonlinear load-deflection relationships due to large deformations. One of the important problems deserving special attention is the study of their nonlinear response to large deflection, postbuckling and nonlinear vibration. A two-step perturbation method is firstly proposed by Shen and Zhang (1988) for postbuckling analysis of isotropic plates. This approach gives parametrical analytical expressions of the variables in the postbuckling range and has been generalized to other plate postbuckling situations. This approach is then successfully used in solving many nonlinear bending, postbuckling, and nonlinear vibration problems of composite laminated plates and shells, in particular for some difficult tasks, for example, shear deformable plates with four free edges resting on elastic foundations, contact postbuckling of laminated plates and shells, nonlinear vibration of anisotropic cylindrical shells. This approach may be found its more extensive applications in nonlinear analysis of nano-scale structures. Concentrates on three types of nonlinear analyses: vibration, bending and postbuckling Presents not only the theoretical aspect of the techniques, but also engineering applications of the method A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells is an original and unique technique devoted entirely to solve geometrically nonlinear problems of beams, plates and shells. It is ideal for academics, researchers and postgraduates in mechanical engineering, civil engineering and aeronautical engineering.

Beams, Plates and Shells

Beams, Plates and Shells
Author :
Publisher : McGraw-Hill Companies
Total Pages : 482
Release :
ISBN-10 : STANFORD:36105030262898
ISBN-13 :
Rating : 4/5 (98 Downloads)

Synopsis Beams, Plates and Shells by : Lloyd Hamilton Donnell

Applied Mechanics Reviews

Applied Mechanics Reviews
Author :
Publisher :
Total Pages : 348
Release :
ISBN-10 : OSU:32435026160556
ISBN-13 :
Rating : 4/5 (56 Downloads)

Synopsis Applied Mechanics Reviews by :

Mathematical Models for Suspension Bridges

Mathematical Models for Suspension Bridges
Author :
Publisher : Springer
Total Pages : 274
Release :
ISBN-10 : 9783319154343
ISBN-13 : 3319154346
Rating : 4/5 (43 Downloads)

Synopsis Mathematical Models for Suspension Bridges by : Filippo Gazzola

This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

Differential Quadrature and Its Application in Engineering

Differential Quadrature and Its Application in Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 366
Release :
ISBN-10 : 1852332093
ISBN-13 : 9781852332099
Rating : 4/5 (93 Downloads)

Synopsis Differential Quadrature and Its Application in Engineering by : Chang Shu

In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.