Nonlinear Eigenvalues and Analytic-Hypoellipticity

Nonlinear Eigenvalues and Analytic-Hypoellipticity
Author :
Publisher : American Mathematical Soc.
Total Pages : 106
Release :
ISBN-10 : 9780821807842
ISBN-13 : 0821807846
Rating : 4/5 (42 Downloads)

Synopsis Nonlinear Eigenvalues and Analytic-Hypoellipticity by : Ching-Chau Yu

Explores the failure of analytic-hypoellipticity of two partial differential operators. The operators are sums of squares of real analytic vector fields and satisfy Hormander's condition. By reducing to an ordinary differential operator, the author shows the existence of non-linear eigenvalues, which is used to disprove analytic- hypoellipticity of the original operators. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Geometric Complex Analysis - Proceedings Of The Third International Research Institute Of Mathematical Society Of Japan

Geometric Complex Analysis - Proceedings Of The Third International Research Institute Of Mathematical Society Of Japan
Author :
Publisher : World Scientific
Total Pages : 738
Release :
ISBN-10 : 9789814548595
ISBN-13 : 9814548596
Rating : 4/5 (95 Downloads)

Synopsis Geometric Complex Analysis - Proceedings Of The Third International Research Institute Of Mathematical Society Of Japan by : J Noguchi

This proceedings is a collection of articles in several complex variables with emphasis on geometric methods and results, which includes several survey papers reviewing the development of the topics in these decades. Through this volume one can see an active field providing insight into other fields like algebraic geometry, dynamical systems and partial differential equations.

Geometric Analysis of PDE and Several Complex Variables

Geometric Analysis of PDE and Several Complex Variables
Author :
Publisher : American Mathematical Soc.
Total Pages : 426
Release :
ISBN-10 : 9780821833865
ISBN-13 : 0821833863
Rating : 4/5 (65 Downloads)

Synopsis Geometric Analysis of PDE and Several Complex Variables by : Francois Treves

This volume is dedicated to Francois Treves, who made substantial contributions to the geometric side of the theory of partial differential equations (PDEs) and several complex variables. One of his best-known contributions, reflected in many of the articles here, is the study of hypo-analytic structures. An international group of well-known mathematicians contributed to the volume. Articles generally reflect the interaction of geometry and analysis that is typical of Treves's work, such as the study of the special types of partial differential equations that arise in conjunction with CR-manifolds, symplectic geometry, or special families of vector fields. There are many topics in analysis and PDEs covered here, unified by their connections to geometry. The material is suitable for graduate students and research mathematicians interested in geometric analysis of PDEs and several complex variables.

Modern Methods in Complex Analysis (AM-137), Volume 137

Modern Methods in Complex Analysis (AM-137), Volume 137
Author :
Publisher : Princeton University Press
Total Pages : 361
Release :
ISBN-10 : 9781400882571
ISBN-13 : 1400882575
Rating : 4/5 (71 Downloads)

Synopsis Modern Methods in Complex Analysis (AM-137), Volume 137 by : Thomas Bloom

The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems
Author :
Publisher : American Mathematical Soc.
Total Pages : 127
Release :
ISBN-10 : 9780821808733
ISBN-13 : 0821808737
Rating : 4/5 (33 Downloads)

Synopsis Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems by : Hasna Riahi

In this work, the author examines the following: When the Hamiltonian system $m i \ddot{q} i + (\partial V/\partial q i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),\; \forall t \in \germ R$ (where $q {i} \in \germ R{\ell}$, $\ell \ge 3$, $1 \le i \le n$, $q = (q {1},...,q {n})$ and $V = \sum V {ij}(t,q {i}-q {j})$ with $V {ij}(t,\xi)$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.

Categories of Operator Modules (Morita Equivalence and Projective Modules)

Categories of Operator Modules (Morita Equivalence and Projective Modules)
Author :
Publisher : American Mathematical Soc.
Total Pages : 109
Release :
ISBN-10 : 9780821819166
ISBN-13 : 082181916X
Rating : 4/5 (66 Downloads)

Synopsis Categories of Operator Modules (Morita Equivalence and Projective Modules) by : David P. Blecher

We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Controllability, Stabilization, and the Regulator Problem for Random Differential Systems

Controllability, Stabilization, and the Regulator Problem for Random Differential Systems
Author :
Publisher : American Mathematical Soc.
Total Pages : 63
Release :
ISBN-10 : 9780821808658
ISBN-13 : 0821808656
Rating : 4/5 (58 Downloads)

Synopsis Controllability, Stabilization, and the Regulator Problem for Random Differential Systems by : Russell Johnson

This volume develops a systematic study of time-dependent control processes. The basic problem of null controllability of linear systems is first considered. Using methods of ergodic theory and topological dynamics, general local null controllability criteria are given. Then the subtle question of global null controllability is studied. Next, the random linear feedback and stabilization problem is posed and solved. Using concepts of exponential dichotomy and rotation number for linear Hamiltonian systems, a solution of the Riccati equation is obtained which has extremely good robustness properties and which also preserves all the smoothness and recurrence properties of the coefficients. Finally, a general version of the local nonlinear feedback stabilization problem is solved.

The Defect Relation of Meromorphic Maps on Parabolic Manifolds

The Defect Relation of Meromorphic Maps on Parabolic Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 95
Release :
ISBN-10 : 9780821810699
ISBN-13 : 0821810693
Rating : 4/5 (99 Downloads)

Synopsis The Defect Relation of Meromorphic Maps on Parabolic Manifolds by : George Lawrence Ashline

This book is intended for graduate students and research mathematicians working in several complex variables and analytic spaces.

Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications

Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 105
Release :
ISBN-10 : 9780821813522
ISBN-13 : 0821813528
Rating : 4/5 (22 Downloads)

Synopsis Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications by : Shlomo Strelitz

Asymptotics are built for the solutions $y_j(x, \lambda)$, $y_j DEGREES{(k)}(0, \lambda)=\delta_{j\, n-k}$, $0\le j, k+1\le n$ of the equation $L(y)=\lambda p(x)y, \quad x\in [0,1], $ where $L(y)$ is a linear differential operator of whatever order $n\ge 2$ and $p(x)$ is assumed to possess a finite number of turning points. The established asymptotics are afterwards applied to the study of: 1) the existence of infinite eigenvalue sequences for various multipoint boundary problems posed on $L(y)=\lambda p(x)y, \quad x\in [0,1], $, especially as $n=2$ and $n=3$ (let us be aware that the same method can be successfully applied on many occasions in case $n>3$ too) and 2) asymptotical distribution of the corresponding eigenvalue sequences on the

Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem

Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem
Author :
Publisher : American Mathematical Soc.
Total Pages : 81
Release :
ISBN-10 : 9780821809389
ISBN-13 : 0821809385
Rating : 4/5 (89 Downloads)

Synopsis Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem by : Lawrence C. Evans

In this volume, the authors demonstrate under some assumptions on $f $, $f $ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{ }=f dx$ onto $\mu =f dy$ can be constructed by studying the $p$-Laplacian equation $- \roman{div}(\vert DU_p\vert p-2}Du_p)=f -f $ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1, -\roman{div}(aDu)=f -f $ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f $ and $f $