Nonlinear Composite Beam Theory
Download Nonlinear Composite Beam Theory full books in PDF, epub, and Kindle. Read online free Nonlinear Composite Beam Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dewey H. Hodges |
Publisher |
: Progress in Astronautics and A |
Total Pages |
: 344 |
Release |
: 2006 |
ISBN-10 |
: UCSD:31822030100903 |
ISBN-13 |
: |
Rating |
: 4/5 (03 Downloads) |
Synopsis Nonlinear Composite Beam Theory by : Dewey H. Hodges
From an authoritative expert whose work on modern helicopter rotor blade analysis has spanned over three decades, comes the first consistent and rigorous presentation of beam theory. Beginning with an overview of the theory developed over the last 60 years, Dr. Hodges addresses the kinematics of beam deformation, provides a simple way to characterize strain in an initially curved and twisted beam, and offers cross-sectional analysis for beams with arbitrary cross sections and composed of arbitrary materials. He goes on to present a way to accurately recover all components of cross-sectional strain and stress before providing a natural one-dimensional (1-D) theory of beams. Sample results for both cross-sectional and 1-D analysis are presented as is a parallel treatment for thin-walled beams.
Author |
: Liviu Librescu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 627 |
Release |
: 2006-01-15 |
ISBN-10 |
: 9781402042034 |
ISBN-13 |
: 1402042035 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Thin-Walled Composite Beams by : Liviu Librescu
Annotation This is the first monograph devoted to the foundation of the theory of composite anisotropic thin-walled beams and to its applications in various problems involving the aeronautical/aerospace, helicopter, naval and mechanical structures. Throughout the theoretical part, an effort was made to provide the treatment of the subject by using the equations of the 3-D elasticity theory. Non-classical effects such as transverse shear, warping constraint, anisotropy of constituent materials yielding the coupling of twist-bending (lateral), bending (transversal)-extension have been included and their implications have been thoroughly analyzed. Thermal effects have been included and in order to be able to circumvent their deleterious effects, functionally graded materials have been considered in their construction. Implications of the application of the tailoring technique and of the active feedback control on free vibration, dynamic response, instability and aeroelasticity of such structures have been amply investigated. Special care was exercised throughout this work to address and validate the adopted solution methodologies and the obtained results against those available in the literature and obtained via numerical or experimental means.
Author |
: Xiaoshan Lin |
Publisher |
: Woodhead Publishing |
Total Pages |
: 258 |
Release |
: 2019-10-18 |
ISBN-10 |
: 9780128169001 |
ISBN-13 |
: 0128169001 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams by : Xiaoshan Lin
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
Author |
: Muthukrishnan Sathyamoorthy |
Publisher |
: CRC Press |
Total Pages |
: 548 |
Release |
: 2017-11-22 |
ISBN-10 |
: 9781351359818 |
ISBN-13 |
: 1351359819 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Nonlinear Analysis of Structures (1997) by : Muthukrishnan Sathyamoorthy
Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.
Author |
: Erasmo Carrera |
Publisher |
: John Wiley & Sons |
Total Pages |
: 171 |
Release |
: 2011-07-28 |
ISBN-10 |
: 9781119951049 |
ISBN-13 |
: 1119951046 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Beam Structures by : Erasmo Carrera
Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.
Author |
: Mohammad Amin Rashidifar |
Publisher |
: Anchor Academic Publishing (aap_verlag) |
Total Pages |
: 143 |
Release |
: 2015-05-12 |
ISBN-10 |
: 9783954899203 |
ISBN-13 |
: 3954899205 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Nonlinear Vibrations of Cantilever Beams and Plates by : Mohammad Amin Rashidifar
Many engineering problems can be solved using a linear approximation. In the Finite Element Analysis (FEA) the set of equations, describing the structural behaviour is then linear K d = F (1.1) In this matrix equation, K is the stiffness matrix of the structure, d is the nodal displacements vector and F is the external nodal force vector. Characteristics of linear problems is that the displacements are proportional to the loads, the stiffness of the structure is independent on the value of the load level. Though behaviour of real structures is nonlinear, e.g. displacements are not proportional to the loads; nonlinearities are usually unimportant and may be neglected in most practical problems.
Author |
: Mehrdaad Ghorashi |
Publisher |
: Springer |
Total Pages |
: 240 |
Release |
: 2016-02-06 |
ISBN-10 |
: 9783319149592 |
ISBN-13 |
: 3319149598 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Statics and Rotational Dynamics of Composite Beams by : Mehrdaad Ghorashi
This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a thorough study of nonlinear elasticity of slender beams and is targeted to researchers, graduate students, and practicing engineers in the fields of structural dynamics, aerospace structures, and mechanical engineering.
Author |
: Ali H. Nayfeh |
Publisher |
: John Wiley & Sons |
Total Pages |
: 763 |
Release |
: 2008-07-11 |
ISBN-10 |
: 9783527617579 |
ISBN-13 |
: 3527617574 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Linear and Nonlinear Structural Mechanics by : Ali H. Nayfeh
* Explains the physical meaning of linear and nonlinear structural mechanics. * Shows how to perform nonlinear structural analysis. * Points out important nonlinear structural dynamics behaviors. * Provides ready-to-use governing equations.
Author |
: Simon R. Eugster |
Publisher |
: Springer |
Total Pages |
: 146 |
Release |
: 2015-03-19 |
ISBN-10 |
: 9783319164953 |
ISBN-13 |
: 3319164953 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Geometric Continuum Mechanics and Induced Beam Theories by : Simon R. Eugster
This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
Author |
: Angelo Luongo |
Publisher |
: John Wiley & Sons |
Total Pages |
: 266 |
Release |
: 2013-12-02 |
ISBN-10 |
: 9781118577639 |
ISBN-13 |
: 1118577639 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Mathematical Models of Beams and Cables by : Angelo Luongo
Nonlinear models of elastic and visco-elastic onedimensional continuous structures (beams and cables) are formulated by the authors of this title. Several models of increasing complexity are presented: straight/curved, planar/non-planar, extensible/inextensible, shearable/unshearable, warpingunsensitive/ sensitive, prestressed/unprestressed beams, both in statics and dynamics. Typical engineering problems are solved via perturbation and/or numerical approaches, such as bifurcation and stability under potential and/or tangential loads, parametric excitation, nonlinear dynamics and aeroelasticity. Contents 1. A One-Dimensional Beam Metamodel. 2. Straight Beams. 3. Curved Beams. 4. Internally Constrained Beams. 5. Flexible Cables. 6. Stiff Cables. 7. Locally-Deformable Thin-Walled Beams. 8. Distortion-Constrained Thin-Walled Beams.