Non-Noble Metal Fuel Cell Catalysts

Non-Noble Metal Fuel Cell Catalysts
Author :
Publisher : John Wiley & Sons
Total Pages : 448
Release :
ISBN-10 : 9783527664924
ISBN-13 : 3527664920
Rating : 4/5 (24 Downloads)

Synopsis Non-Noble Metal Fuel Cell Catalysts by : Zhongwei Chen

Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.

Non-Noble Metal Fuel Cell Catalysts

Non-Noble Metal Fuel Cell Catalysts
Author :
Publisher : John Wiley & Sons
Total Pages : 0
Release :
ISBN-10 : 352733324X
ISBN-13 : 9783527333240
Rating : 4/5 (4X Downloads)

Synopsis Non-Noble Metal Fuel Cell Catalysts by : Zhongwei Chen

Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.

Electrocatalysts for Low Temperature Fuel Cells

Electrocatalysts for Low Temperature Fuel Cells
Author :
Publisher : John Wiley & Sons
Total Pages : 618
Release :
ISBN-10 : 9783527803897
ISBN-13 : 3527803890
Rating : 4/5 (97 Downloads)

Synopsis Electrocatalysts for Low Temperature Fuel Cells by : Thandavarayan Maiyalagan

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions
Author :
Publisher : MDPI
Total Pages : 190
Release :
ISBN-10 : 9783039215409
ISBN-13 : 303921540X
Rating : 4/5 (09 Downloads)

Synopsis Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions by : Hui Yang

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.

Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells
Author :
Publisher : Springer Science & Business Media
Total Pages : 748
Release :
ISBN-10 : 9781447149118
ISBN-13 : 1447149114
Rating : 4/5 (18 Downloads)

Synopsis Electrocatalysis in Fuel Cells by : Minhua Shao

Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers
Author :
Publisher : Springer Science & Business Media
Total Pages : 1147
Release :
ISBN-10 : 9781848009363
ISBN-13 : 1848009364
Rating : 4/5 (63 Downloads)

Synopsis PEM Fuel Cell Electrocatalysts and Catalyst Layers by : Jiujun Zhang

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Advanced Electrocatalysts for Low-Temperature Fuel Cells

Advanced Electrocatalysts for Low-Temperature Fuel Cells
Author :
Publisher : Springer
Total Pages : 318
Release :
ISBN-10 : 9783319990194
ISBN-13 : 3319990195
Rating : 4/5 (94 Downloads)

Synopsis Advanced Electrocatalysts for Low-Temperature Fuel Cells by : Francisco Javier Rodríguez-Varela

This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.

High Performance, High Durability Non-precious Metal Fuel Cell Catalysts

High Performance, High Durability Non-precious Metal Fuel Cell Catalysts
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:946822750
ISBN-13 :
Rating : 4/5 (50 Downloads)

Synopsis High Performance, High Durability Non-precious Metal Fuel Cell Catalysts by :

This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.