NMR Data Interpretation Explained

NMR Data Interpretation Explained
Author :
Publisher : John Wiley & Sons
Total Pages : 652
Release :
ISBN-10 : 9781119047148
ISBN-13 : 1119047145
Rating : 4/5 (48 Downloads)

Synopsis NMR Data Interpretation Explained by : Neil E. Jacobsen

Through numerous examples, the principles of the relationship between chemical structure and the NMR spectrum are developed in a logical, step-by-step fashion Includes examples and exercises based on real NMR data including full 600 MHz one- and two-dimensional datasets of sugars, peptides, steroids and natural products Includes detailed solutions and explanations in the text for the numerous examples and problems and also provides large, very detailed and annotated sets of NMR data for use in understanding the material Describes both simple aspects of solution-state NMR of small molecules as well as more complex topics not usually covered in NMR books such as complex splitting patterns, weak long-range couplings, spreadsheet analysis of strong coupling patterns and resonance structure analysis for prediction of chemical shifts Advanced topics include all of the common two-dimensional experiments (COSY, ROESY, NOESY, TOCSY, HSQC, HMBC) covered strictly from the point of view of data interpretation, along with tips for parameter settings

NMR Spectroscopy Explained

NMR Spectroscopy Explained
Author :
Publisher : John Wiley & Sons
Total Pages : 686
Release :
ISBN-10 : 9780470173343
ISBN-13 : 0470173343
Rating : 4/5 (43 Downloads)

Synopsis NMR Spectroscopy Explained by : Neil E. Jacobsen

NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology provides a fresh, practical guide to NMR for both students and practitioners, in a clearly written and non-mathematical format. It gives the reader an intermediate level theoretical basis for understanding laboratory applications, developing concepts gradually within the context of examples and useful experiments. Introduces students to modern NMR as applied to analysis of organic compounds. Presents material in a clear, conversational style that is appealing to students. Contains comprehensive coverage of how NMR experiments actually work. Combines basic ideas with practical implementation of the spectrometer. Provides an intermediate level theoretical basis for understanding laboratory experiments. Develops concepts gradually within the context of examples and useful experiments. Introduces the product operator formalism after introducing the simpler (but limited) vector model.

NMR Data Interpretation Explained

NMR Data Interpretation Explained
Author :
Publisher : John Wiley & Sons
Total Pages : 1003
Release :
ISBN-10 : 9781119176886
ISBN-13 : 1119176883
Rating : 4/5 (86 Downloads)

Synopsis NMR Data Interpretation Explained by : Neil E. Jacobsen

Through numerous examples, the principles of the relationship between chemical structure and the NMR spectrum are developed in a logical, step-by-step fashion Includes examples and exercises based on real NMR data including full 600 MHz one- and two-dimensional datasets of sugars, peptides, steroids and natural products Includes detailed solutions and explanations in the text for the numerous examples and problems and also provides large, very detailed and annotated sets of NMR data for use in understanding the material Describes both simple aspects of solution-state NMR of small molecules as well as more complex topics not usually covered in NMR books such as complex splitting patterns, weak long-range couplings, spreadsheet analysis of strong coupling patterns and resonance structure analysis for prediction of chemical shifts Advanced topics include all of the common two-dimensional experiments (COSY, ROESY, NOESY, TOCSY, HSQC, HMBC) covered strictly from the point of view of data interpretation, along with tips for parameter settings

Basic 1H- and 13C-NMR Spectroscopy

Basic 1H- and 13C-NMR Spectroscopy
Author :
Publisher : Elsevier
Total Pages : 441
Release :
ISBN-10 : 9780080525532
ISBN-13 : 0080525539
Rating : 4/5 (32 Downloads)

Synopsis Basic 1H- and 13C-NMR Spectroscopy by : Metin Balci

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. Basic 1H- and 13C-NMR Spectroscopy provides an introduction to the principles and applications of NMR spectroscopy. Whilst looking at the problems students encounter when using NMR spectroscopy, the author avoids the complicated mathematics that are applied within the field. Providing a rational description of the NMR phenomenon, this book is easy to read and is suitable for the undergraduate and graduate student in chemistry. - Describes the fundamental principles of the pulse NMR experiment and 2D NMR spectra - Easy to read and written with the undergraduate and graduate chemistry student in mind - Provides a rational description of NMR spectroscopy without complicated mathematics

Guide to Nmr Spectral Interpretation

Guide to Nmr Spectral Interpretation
Author :
Publisher : Loghia Di Amoresano Claudia
Total Pages : 344
Release :
ISBN-10 : 8895122402
ISBN-13 : 9788895122403
Rating : 4/5 (02 Downloads)

Synopsis Guide to Nmr Spectral Interpretation by : Antonio Randazzo

This book is designed to provide undergraduate and graduate students with practical strategies, methods and explanations to interpret the NMR spectra of small organic molecules. In particular, it is organized in a way that basic 1H- and 13iNMR concepts are introduced and immediately applied in a number of problems, solved and discussed in a step-by-step fashion. It contains almost exclusively real NMR data and it describes how to interpret the chemical shift, intensity and splitting pattern of the proton and carbon NMR signals (Chapters 1-5), paying attention to the effects of the magnetically non-equivalent nuclei (Chapter 4). The role of the solvent is also explained (Chapter 6), and a description of the interpretation of the most common two-dimensional NMR experiments is reported in Chapter 7. Chapter 8 is dedicated to the strategy for structural elucidation, while Chapter 9 contains exclusively summary problems.

NMR Spectroscopy

NMR Spectroscopy
Author :
Publisher : John Wiley & Sons
Total Pages : 842
Release :
ISBN-10 : 9783527674770
ISBN-13 : 3527674772
Rating : 4/5 (70 Downloads)

Synopsis NMR Spectroscopy by : Harald Günther

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.

Biological NMR Spectroscopy

Biological NMR Spectroscopy
Author :
Publisher : Oxford University Press
Total Pages : 375
Release :
ISBN-10 : 9780195094688
ISBN-13 : 0195094689
Rating : 4/5 (88 Downloads)

Synopsis Biological NMR Spectroscopy by : John L. Markley

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.

Understanding NMR Spectroscopy

Understanding NMR Spectroscopy
Author :
Publisher : John Wiley & Sons
Total Pages : 533
Release :
ISBN-10 : 9781119964933
ISBN-13 : 1119964938
Rating : 4/5 (33 Downloads)

Synopsis Understanding NMR Spectroscopy by : James Keeler

This text is aimed at people who have some familiarity with high-resolution NMR and who wish to deepen their understanding of how NMR experiments actually ‘work’. This revised and updated edition takes the same approach as the highly-acclaimed first edition. The text concentrates on the description of commonly-used experiments and explains in detail the theory behind how such experiments work. The quantum mechanical tools needed to analyse pulse sequences are introduced set by step, but the approach is relatively informal with the emphasis on obtaining a good understanding of how the experiments actually work. The use of two-colour printing and a new larger format improves the readability of the text. In addition, a number of new topics have been introduced: How product operators can be extended to describe experiments in AX2 and AX3 spin systems, thus making it possible to discuss the important APT, INEPT and DEPT experiments often used in carbon-13 NMR. Spin system analysis i.e. how shifts and couplings can be extracted from strongly-coupled (second-order) spectra. How the presence of chemically equivalent spins leads to spectral features which are somewhat unusual and possibly misleading, even at high magnetic fields. A discussion of chemical exchange effects has been introduced in order to help with the explanation of transverse relaxation. The double-quantum spectroscopy of a three-spin system is now considered in more detail. Reviews of the First Edition “For anyone wishing to know what really goes on in their NMR experiments, I would highly recommend this book” – Chemistry World “...I warmly recommend for budding NMR spectroscopists, or others who wish to deepen their understanding of elementary NMR theory or theoretical tools” – Magnetic Resonance in Chemistry

Tables of Spectral Data for Structure Determination of Organic Compounds

Tables of Spectral Data for Structure Determination of Organic Compounds
Author :
Publisher : Springer Science & Business Media
Total Pages : 325
Release :
ISBN-10 : 9783662224557
ISBN-13 : 3662224550
Rating : 4/5 (57 Downloads)

Synopsis Tables of Spectral Data for Structure Determination of Organic Compounds by : Ernö Pretsch

Although numerical data are, in principle, universal, the compilations presented in this book are extensively annotated and interleaved with text. This translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature. Fortunately, spectroscopic data and their relationship with structure do not change much with time so one can predict that this book will, for a long period of time, continue to be very useful to organic chemists involved in the identification of organic compounds or the elucidation of their structure. Klaus Biemann Cambridge, MA, April 1983 Preface to the First German Edition Making use of the information provided by various spectroscopic tech niques has become a matter of routine for the analytically oriented organic chemist. Those who have graduated recently received extensive training in these techniques as part of the curriculum while their older colleagues learned to use these methods by necessity. One can, therefore, assume that chemists are well versed in the proper choice of the methods suitable for the solution of a particular problem and to translate the experimental data into structural information.