Next Generation Knowledge Machines

Next Generation Knowledge Machines
Author :
Publisher : Elsevier
Total Pages : 337
Release :
ISBN-10 : 9780124166691
ISBN-13 : 0124166695
Rating : 4/5 (91 Downloads)

Synopsis Next Generation Knowledge Machines by : Syed V. Ahamed

This book delivers the scientific and mathematical basis to treat and process knowledge as a quantifiable and dimensioned entity. It provides the units and measures for the value of information contained in a "body of knowledge" that can be measured, processed, enhanced, communicated and preserved. It provides a basis to evaluate the quantity of knowledge acquired by students at various levels and in different universities. The effect of time on the dynamics and flow of knowledge is tied to Internet knowledge banks and provides the basis for designing and building the next generation of novel machine to appear in society. This book ties the basic needs of all human beings to the modern machines that resolve such need based on Internet knowledge banks (KBs) distributed throughout nations and societies. The features of the Intelligent Internet are fully exploited to make a new generation of students and knowledge workers use the knowledge resources elegantly and optimally. It deals with topics and insight into the design and architecture of next-generation computing systems that deal with human and social problems. Processor and Internet technologies that have already revolutionized human lives form the subject matter and the focal point of this book. Information and knowledge on the Internet delivered by next-generation mobile networks form the technical core presented. Human thought processes and adjustments follow the solutions offered by machines. - Extends the established practices and designs documented in computer systems to encompass the evolving knowledge processing field - Provides an academic and industrial viewpoint of the concurrent dynamic changes in computer and communication industries - Presents information for all perspectives, from managers, scientists and researchers - Basic concepts can be applied to other disciplines and situations

Next-Generation Machine Learning with Spark

Next-Generation Machine Learning with Spark
Author :
Publisher : Apress
Total Pages : 367
Release :
ISBN-10 : 9781484256695
ISBN-13 : 1484256697
Rating : 4/5 (95 Downloads)

Synopsis Next-Generation Machine Learning with Spark by : Butch Quinto

Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. What You Will Learn Be introduced to machine learning, Spark, and Spark MLlib 2.4.xAchieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM librariesDetect anomalies with the Isolation Forest algorithm for SparkUse the Spark NLP and Stanford CoreNLP libraries that support multiple languagesOptimize your ML workload with the Alluxio in-memory data accelerator for SparkUse GraphX and GraphFrames for Graph AnalysisPerform image recognition using convolutional neural networksUtilize the Keras framework and distributed deep learning libraries with Spark Who This Book Is For Data scientists and machine learning engineers who want to take their knowledge to the next level and use Spark and more powerful, next-generation algorithms and libraries beyond what is available in the standard Spark MLlib library; also serves as a primer for aspiring data scientists and engineers who need an introduction to machine learning, Spark, and Spark MLlib.

Intelligent Networks

Intelligent Networks
Author :
Publisher : Elsevier
Total Pages : 343
Release :
ISBN-10 : 9780124166707
ISBN-13 : 0124166709
Rating : 4/5 (07 Downloads)

Synopsis Intelligent Networks by : Syed V. Ahamed

This textbook offers an insightful study of the intelligent Internet-driven revolutionary and fundamental forces at work in society. Readers will have access to tools and techniques to mentor and monitor these forces rather than be driven by changes in Internet technology and flow of money. These submerged social and human forces form a powerful synergistic foursome web of (a) processor technology, (b) evolving wireless networks of the next generation, (c) the intelligent Internet, and (d) the motivation that drives individuals and corporations. In unison, the technological forces can tear human lives apart for the passive or provide a cohesive set of opportunities for the knowledgeable to lead and reap the rewards in the evolved knowledge society. The book also provides in-depth coverage of the functions embedded in modern processors and intelligent communication networks. It focuses on the convergence of the design of modern processor technologies with the switching and routing methodologies of global intelligent networks. Most of the concepts that are generic to the design of terra-flop parallel processors and the terra-bit fiber-optic networks are presented. This book also highlights recent developments in computer and processor technologies into the microscopic and macroscopic medical functions in hospitals and medical centers. - Examination of the latest technologies and innovations presented from academic and industrial perspectives of the concurrent dynamic changes in computer and communication industries - An up-to-date and coherent perspective of the developments in the wireless and fiber optic network technologies based on the experience and developments in the older copper, cable and hybrid fiber-coaxial communication systems - Provides a set of novel concepts and methodologies for the innovators in industry

Knowledge Machines

Knowledge Machines
Author :
Publisher : MIT Press
Total Pages : 285
Release :
ISBN-10 : 9780262547857
ISBN-13 : 0262547856
Rating : 4/5 (57 Downloads)

Synopsis Knowledge Machines by : Eric T. Meyer

An examination of the ways that digital and networked technologies have fundamentally changed research practices in disciplines from astronomy to literary analysis. In Knowledge Machines, Eric Meyer and Ralph Schroeder argue that digital technologies have fundamentally changed research practices in the sciences, social sciences, and humanities. Meyer and Schroeder show that digital tools and data, used collectively and in distributed mode—which they term e-research—have transformed not just the consumption of knowledge but also the production of knowledge. Digital technologies for research are reshaping how knowledge advances in disciplines that range from physics to literary analysis. Meyer and Schroeder map the rise of digital research and offer case studies from many fields, including biomedicine, social science uses of the Web, astronomy, and large-scale textual analysis in the humanities. They consider such topics as the challenges of sharing research data and of big data approaches, disciplinary differences and new forms of interdisciplinary collaboration, the shifting boundaries between researchers and their publics, and the ways that digital tools promote openness in science. This book considers the transformations of research from a number of perspectives, drawing especially on the sociology of science and technology and social informatics. It shows that the use of digital tools and data is not just a technical issue; it affects research practices, collaboration models, publishing choices, and even the kinds of research and research questions scholars choose to pursue. Knowledge Machines examines the nature and implications of these transformations for scholarly research.

Intelligent Internet Knowledge Networks

Intelligent Internet Knowledge Networks
Author :
Publisher : John Wiley & Sons
Total Pages : 549
Release :
ISBN-10 : 9780470055984
ISBN-13 : 0470055987
Rating : 4/5 (84 Downloads)

Synopsis Intelligent Internet Knowledge Networks by : Syed V. Ahamed

Introducing the basic concepts in total program control of the intelligent agents and machines, Intelligent Internet Knowledge Networks explores the design and architecture of information systems that include and emphasize the interactive role of modern computer/communication systems and human beings. Here, you’ll discover specific network configurations that sense environments, presented through case studies of IT platforms, electrical governments, medical networks, and educational networks.

The Development of Natural Language Processing

The Development of Natural Language Processing
Author :
Publisher : Springer Nature
Total Pages : 83
Release :
ISBN-10 : 9789811619861
ISBN-13 : 9811619867
Rating : 4/5 (61 Downloads)

Synopsis The Development of Natural Language Processing by : China Info & Comm Tech Grp Corp

This book is a part of the Blue Book series “Research on the Development of Electronic Information Engineering Technology in China”, which explores the cutting edge of natural language processing (NLP) studies. The research objects of natural language processing are evolved from words, phrases, and sentences to text, and research directions are from language analysis, language understanding, language generation, knowledge graphs, machine translation, to deep semantic understanding, and beyond. This is in line with the development trend of applications. And for another typical NLP application machine translation, from text translation, to voice and image translation, now simultaneous interpretation, progress of technology makes the application of machine translation deeper and wider into diverse industries. This book is intended for researchers and industrial staffs who have been following the current situation and future trends of the natural language processing. Meanwhile, it also bears high value of reference for experts, scholars, and technical and engineering managers of different levels and different fields.

Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application

Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application
Author :
Publisher : IGI Global
Total Pages : 354
Release :
ISBN-10 : 9781668486887
ISBN-13 : 1668486881
Rating : 4/5 (87 Downloads)

Synopsis Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application by : Bouarara, Hadj Ahmed

In the evolving landscape of Web3, the use of advanced machine learning, artificial intelligence, and cybersecurity transforms industries through theoretical exploration and practical application. The integration of advanced machine learning and AI techniques promises enhanced security protocols, predictive analytics, and adaptive defenses against the increasing number of cyber threats. However, these technological improvements also raise questions regarding privacy, transparency, and the ethical implications of AI-driven security measures. Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application explores theories and applications of improved technological techniques in Web 3.0. It addresses the challenges inherent to decentralization while harnessing the benefits offered by advances, thereby paving the way for a safer and more advanced digital era. Covering topics such as fraud detection, cryptocurrency, and data management, this book is a useful resource for computer engineers, financial institutions, security and IT professionals, business owners, researchers, scientists, and academicians.

Reinforcement and Systemic Machine Learning for Decision Making

Reinforcement and Systemic Machine Learning for Decision Making
Author :
Publisher : John Wiley & Sons
Total Pages : 324
Release :
ISBN-10 : 9781118271551
ISBN-13 : 1118271556
Rating : 4/5 (51 Downloads)

Synopsis Reinforcement and Systemic Machine Learning for Decision Making by : Parag Kulkarni

Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available—or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm—creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new and growing field, Reinforcement and Systemic Machine Learning for Decision Making focuses on the specialized research area of machine learning and systemic machine learning. It addresses reinforcement learning and its applications, incremental machine learning, repetitive failure-correction mechanisms, and multiperspective decision making. Chapters include: Introduction to Reinforcement and Systemic Machine Learning Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning Systemic Machine Learning and Model Inference and Information Integration Adaptive Learning Incremental Learning and Knowledge Representation Knowledge Augmentation: A Machine Learning Perspective Building a Learning System With the potential of this paradigm to become one of the more utilized in its field, professionals in the area of machine and systemic learning will find this book to be a valuable resource.

Next Generation Internet of Things

Next Generation Internet of Things
Author :
Publisher : River Publishers
Total Pages : 352
Release :
ISBN-10 : 9788770220088
ISBN-13 : 8770220085
Rating : 4/5 (88 Downloads)

Synopsis Next Generation Internet of Things by : Vermesan, Ovidiu

This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment. The text builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment. The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual and augmented reality (VR/AR), and AI transformation. Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats. The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications. The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications. Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems. New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure. The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas.

Knowledge Graphs: Semantics, Machine Learning, and Languages

Knowledge Graphs: Semantics, Machine Learning, and Languages
Author :
Publisher : IOS Press
Total Pages : 262
Release :
ISBN-10 : 9781643684253
ISBN-13 : 1643684256
Rating : 4/5 (53 Downloads)

Synopsis Knowledge Graphs: Semantics, Machine Learning, and Languages by : M. Acosta

Semantic computing is an integral part of modern technology, an essential component of fields as diverse as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. This book presents the proceedings of SEMANTICS 2023, the 19th International Conference on Semantic Systems, held in Leipzig, Germany, from 20 to 22 September 2023. The conference is a pivotal event for those professionals and researchers actively engaged in harnessing the power of semantic computing, an opportunity to increase their understanding of the subject’s transformative potential while confronting its practical limitations. Attendees include information managers, IT architects, software engineers, and researchers from a broad spectrum of organizations, including research facilities, non-profit entities, public administrations, and the world's largest corporations. For this year’s conference a total of 54 submissions were received in response to a call for papers. These were subjected to a rigorous, double-blind review process, with at least three independent reviews conducted for each submission. The 16 papers included here were ultimately accepted for presentation, with an acceptance rate of 29.6%. Areas covered include novel research challenges in areas such as data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web. The book provides an up-to-date overview, which will be of interest to all those wishing to stay abreast of emerging trends and themes within the vast field of semantic computing.