New Trends in Algebraic Geometry

New Trends in Algebraic Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 500
Release :
ISBN-10 : 0521646596
ISBN-13 : 9780521646598
Rating : 4/5 (96 Downloads)

Synopsis New Trends in Algebraic Geometry by : Klaus Hulek

This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.

Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 386
Release :
ISBN-10 : 9781470435578
ISBN-13 : 1470435578
Rating : 4/5 (78 Downloads)

Synopsis Surveys on Recent Developments in Algebraic Geometry by : Izzet Coskun

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 437
Release :
ISBN-10 : 9780521768252
ISBN-13 : 052176825X
Rating : 4/5 (52 Downloads)

Synopsis Current Developments in Algebraic Geometry by : Lucia Caporaso

This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

Recent Trends in Algebraic Combinatorics

Recent Trends in Algebraic Combinatorics
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3030051404
ISBN-13 : 9783030051402
Rating : 4/5 (04 Downloads)

Synopsis Recent Trends in Algebraic Combinatorics by : Hélène Barcelo

This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Author :
Publisher : American Mathematical Society
Total Pages : 533
Release :
ISBN-10 : 9781470452841
ISBN-13 : 1470452847
Rating : 4/5 (41 Downloads)

Synopsis A Study in Derived Algebraic Geometry by : Dennis Gaitsgory

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $mathrm{(}infty, 2mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $mathrm{(}infty, 2mathrm{)}$-categories needed for the third part.

Noncommutative Algebraic Geometry

Noncommutative Algebraic Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 367
Release :
ISBN-10 : 9781107129542
ISBN-13 : 1107129540
Rating : 4/5 (42 Downloads)

Synopsis Noncommutative Algebraic Geometry by : Gwyn Bellamy

This book provides a comprehensive introduction to the interactions between noncommutative algebra and classical algebraic geometry.

Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry
Author :
Publisher : SIAM
Total Pages : 487
Release :
ISBN-10 : 9781611972283
ISBN-13 : 1611972280
Rating : 4/5 (83 Downloads)

Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Mordell–Weil Lattices

Mordell–Weil Lattices
Author :
Publisher : Springer Nature
Total Pages : 436
Release :
ISBN-10 : 9789813293014
ISBN-13 : 9813293012
Rating : 4/5 (14 Downloads)

Synopsis Mordell–Weil Lattices by : Matthias Schütt

This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.

Complex Analysis

Complex Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 353
Release :
ISBN-10 : 9783034600095
ISBN-13 : 3034600097
Rating : 4/5 (95 Downloads)

Synopsis Complex Analysis by : Peter Ebenfelt

This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.

Contemporary Trends in Algebraic Geometry and Algebraic Topology

Contemporary Trends in Algebraic Geometry and Algebraic Topology
Author :
Publisher : World Scientific
Total Pages : 278
Release :
ISBN-10 : 9812777415
ISBN-13 : 9789812777416
Rating : 4/5 (15 Downloads)

Synopsis Contemporary Trends in Algebraic Geometry and Algebraic Topology by : Shiing-Shen Chern

The Wei-Liang Chow and Kuo-Tsai Chen Memorial Conference was proposed and held by Prof S S Chern in Nankai Institute of Mathematics. It was devoted to memorializing those two outstanding and original Chinese mathematicians who had made significant contributions to algebraic geometry and algebraic topology, respectively. It also provided a forum for leading mathematicians to expound and discuss their views on new ideas in these fields, as well as trends in 21st Century mathematics. About 100 mathematicians participated in the conference, including Sir Michael Atiyah, Jacob Palis, Phillip Griffiths, David Eisenbud, Philippe Tondeur, Yujiro Kawamata, Tian Gang, etc.This invaluable volume contains the selected papers presented at the conference. The topics include canonical maps of Gorenstein 3-folds, fundamental groups of algebraic curves, Chen''s interated integrals, algebraic fiber spaces, and others.