New Advances in Statistics and Data Science

New Advances in Statistics and Data Science
Author :
Publisher : Springer
Total Pages : 355
Release :
ISBN-10 : 9783319694160
ISBN-13 : 3319694162
Rating : 4/5 (60 Downloads)

Synopsis New Advances in Statistics and Data Science by : Ding-Geng Chen

This book is comprised of the presentations delivered at the 25th ICSA Applied Statistics Symposium held at the Hyatt Regency Atlanta, on June 12-15, 2016. This symposium attracted more than 700 statisticians and data scientists working in academia, government, and industry from all over the world. The theme of this conference was the “Challenge of Big Data and Applications of Statistics,” in recognition of the advent of big data era, and the symposium offered opportunities for learning, receiving inspirations from old research ideas and for developing new ones, and for promoting further research collaborations in the data sciences. The invited contributions addressed rich topics closely related to big data analysis in the data sciences, reflecting recent advances and major challenges in statistics, business statistics, and biostatistics. Subsequently, the six editors selected 19 high-quality presentations and invited the speakers to prepare full chapters for this book, which showcases new methods in statistics and data sciences, emerging theories, and case applications from statistics, data science and interdisciplinary fields. The topics covered in the book are timely and have great impact on data sciences, identifying important directions for future research, promoting advanced statistical methods in big data science, and facilitating future collaborations across disciplines and between theory and practice.

Computational Statistics in Data Science

Computational Statistics in Data Science
Author :
Publisher : John Wiley & Sons
Total Pages : 672
Release :
ISBN-10 : 9781119561088
ISBN-13 : 1119561086
Rating : 4/5 (88 Downloads)

Synopsis Computational Statistics in Data Science by : Richard A. Levine

Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 322
Release :
ISBN-10 : 9781491952917
ISBN-13 : 1491952911
Rating : 4/5 (17 Downloads)

Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Recent Advances in Data Science

Recent Advances in Data Science
Author :
Publisher : Springer Nature
Total Pages : 295
Release :
ISBN-10 : 9789811587603
ISBN-13 : 9811587604
Rating : 4/5 (03 Downloads)

Synopsis Recent Advances in Data Science by : Henry Han

This book constitutes selected papers of the ​Third International Conference on Data Science, Medicine and Bioinformatics, IDMB 2019, held in Nanning, China, in June 2019. The 19 full papers and 1 short paper were carefully reviewed and selected from 93 submissions. The papers are organized according to the following topical sections: business data science: fintech, management, and analytics.- health and biological data science.- novel data science theory and applications.

Data Science and Machine Learning

Data Science and Machine Learning
Author :
Publisher : CRC Press
Total Pages : 538
Release :
ISBN-10 : 9781000730777
ISBN-13 : 1000730778
Rating : 4/5 (77 Downloads)

Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Advanced Statistical Methods in Data Science

Advanced Statistical Methods in Data Science
Author :
Publisher : Springer
Total Pages : 229
Release :
ISBN-10 : 9789811025945
ISBN-13 : 9811025940
Rating : 4/5 (45 Downloads)

Synopsis Advanced Statistical Methods in Data Science by : Ding-Geng Chen

This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.

Statistical Foundations of Data Science

Statistical Foundations of Data Science
Author :
Publisher : CRC Press
Total Pages : 974
Release :
ISBN-10 : 9780429527616
ISBN-13 : 0429527616
Rating : 4/5 (16 Downloads)

Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Probability and Statistics for Data Science

Probability and Statistics for Data Science
Author :
Publisher : CRC Press
Total Pages : 289
Release :
ISBN-10 : 9780429687112
ISBN-13 : 0429687117
Rating : 4/5 (12 Downloads)

Synopsis Probability and Statistics for Data Science by : Norman Matloff

Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

Data Science and Social Research

Data Science and Social Research
Author :
Publisher : Springer
Total Pages : 292
Release :
ISBN-10 : 9783319554778
ISBN-13 : 3319554778
Rating : 4/5 (78 Downloads)

Synopsis Data Science and Social Research by : N. Carlo Lauro

This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.

Data Analysis for the Life Sciences with R

Data Analysis for the Life Sciences with R
Author :
Publisher : CRC Press
Total Pages : 537
Release :
ISBN-10 : 9781498775861
ISBN-13 : 1498775861
Rating : 4/5 (61 Downloads)

Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry

This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.