Neutronic Analysis For Nuclear Reactor Systems
Download Neutronic Analysis For Nuclear Reactor Systems full books in PDF, epub, and Kindle. Read online free Neutronic Analysis For Nuclear Reactor Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Bahman Zohuri |
Publisher |
: Springer |
Total Pages |
: 560 |
Release |
: 2016-11-01 |
ISBN-10 |
: 9783319429649 |
ISBN-13 |
: 3319429647 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Neutronic Analysis For Nuclear Reactor Systems by : Bahman Zohuri
This book covers the entire spectrum of the science and technology of nuclear reactor systems, from underlying physics, to next generation system applications and beyond. Beginning with neutron physics background and modeling of transport and diffusion, this self-contained learning tool progresses step-by-step to discussions of reactor kinetics, dynamics, and stability that will be invaluable to anyone with a college-level mathematics background wishing to develop an understanding of nuclear power. From fuels and reactions to full systems and plants, the author provides a clear picture of how nuclear energy works, how it can be optimized for safety and efficiency, and why it is important to the future.
Author |
: Bahman Zohuri |
Publisher |
: Springer |
Total Pages |
: 672 |
Release |
: 2019-02-09 |
ISBN-10 |
: 9783030049065 |
ISBN-13 |
: 303004906X |
Rating |
: 4/5 (65 Downloads) |
Synopsis Neutronic Analysis For Nuclear Reactor Systems by : Bahman Zohuri
This expanded new edition develops the theory of nuclear reactors from the fundamentals of fission to the operating characteristics of modern reactors. The first half of the book emphasizes reactor criticality analysis and all of the fundamentals that go into modern calculations. Simplified one group diffusion theory models are presented and extended into sophisticated multi-group transport theory models. The second half of the book deals with the two main topics of interest related to operating reactors – reactor kinetics/dynamics, and in-core fuel management. Additional chapters have been added to expand and bring the material up-to-date and include the utilization of more computer codes. Code models and detailed data sets are provided along with example problems making this a useful text for students and researchers wishing to develop an understanding of nuclear power and its implementation in today’s modern energy spectrum. Covers the fundamentals of neutronic analysis for nuclear reactor systems to help understand nuclear reactor theory; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors; Provides examples, data sets, and code to assist the reader in obtaining mastery over the subjects.
Author |
: Thomas W. Kerlin |
Publisher |
: Academic Press |
Total Pages |
: 404 |
Release |
: 2019-10-05 |
ISBN-10 |
: 9780128152621 |
ISBN-13 |
: 0128152621 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Dynamics and Control of Nuclear Reactors by : Thomas W. Kerlin
Dynamics and Control of Nuclear Reactors presents the latest knowledge and research in reactor dynamics, control and instrumentation; important factors in ensuring the safe and economic operation of nuclear power plants. This book provides current and future engineers with a single resource containing all relevant information, including detailed treatments on the modeling, simulation, operational features and dynamic characteristics of pressurized light-water reactors, boiling light-water reactors, pressurized heavy-water reactors and molten-salt reactors. It also provides pertinent, but less detailed information on small modular reactors, sodium fast reactors, and gas-cooled reactors. - Provides case studies and examples to demonstrate learning through problem solving, including an analysis of accidents at Three Mile Island, Chernobyl and Fukushima Daiichi - Includes MATLAB codes to enable the reader to apply the knowledge gained to their own projects and research - Features examples and problems that illustrate the principles of dynamic analysis as well as the mathematical tools necessary to understand and apply the analysis Publishers Note: Table 3.1 has been revised and will be included in future printings of the book with the following data: Group Decay Constant, li (sec-1) Delayed Neutron Fraction (bi) 1 0.0124 0.000221 2 0.0305 0.001467 3 0.111 0.001313 4 0.301 0.002647 5 1.14 0.000771 6 3.01 0.000281 Total delayed neutron fraction: 0.0067
Author |
: James J. Duderstadt |
Publisher |
: Wiley |
Total Pages |
: 0 |
Release |
: 1991-01-16 |
ISBN-10 |
: 0471223638 |
ISBN-13 |
: 9780471223634 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Nuclear Reactor Analysis by : James J. Duderstadt
Classic textbook for an introductory course in nuclear reactor analysis that introduces the nuclear engineering student to the basic scientific principles of nuclear fission chain reactions and lays a foundation for the subsequent application of these principles to the nuclear design and analysis of reactor cores. This text introduces the student to the fundamental principles governing nuclear fission chain reactions in a manner that renders the transition to practical nuclear reactor design methods most natural. The authors stress throughout the very close interplay between the nuclear analysis of a reactor core and those nonnuclear aspects of core analysis, such as thermal-hydraulics or materials studies, which play a major role in determining a reactor design.
Author |
: John C. Lee |
Publisher |
: John Wiley & Sons |
Total Pages |
: 658 |
Release |
: 2020-02-26 |
ISBN-10 |
: 9781119582328 |
ISBN-13 |
: 1119582326 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Nuclear Reactor by : John C. Lee
An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.
Author |
: P. Mohanakrishnan |
Publisher |
: Elsevier |
Total Pages |
: 786 |
Release |
: 2021-05-19 |
ISBN-10 |
: 9780128224410 |
ISBN-13 |
: 012822441X |
Rating |
: 4/5 (10 Downloads) |
Synopsis Physics of Nuclear Reactors by : P. Mohanakrishnan
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
Author |
: Christophe Demazière |
Publisher |
: Academic Press |
Total Pages |
: 370 |
Release |
: 2019-11-19 |
ISBN-10 |
: 9780128150702 |
ISBN-13 |
: 012815070X |
Rating |
: 4/5 (02 Downloads) |
Synopsis Modelling of Nuclear Reactor Multi-physics by : Christophe Demazière
Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book's subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. - Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference - Analyses the emerging area of multi-physics and multi-scale reactor modelling - Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding
Author |
: Salvatore Esposito |
Publisher |
: World Scientific |
Total Pages |
: 702 |
Release |
: 2010 |
ISBN-10 |
: 9789814291231 |
ISBN-13 |
: 9814291234 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Neutron Physics for Nuclear Reactors by : Salvatore Esposito
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
Author |
: International Atomic Energy Agency |
Publisher |
: International Atomic Energy Agency |
Total Pages |
: 108 |
Release |
: 2014 |
ISBN-10 |
: 9201450109 |
ISBN-13 |
: 9789201450104 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Applications of Research Reactors by : International Atomic Energy Agency
This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.
Author |
: International Atomic Energy Agency |
Publisher |
: IAEA Radiation Technology Repo |
Total Pages |
: 145 |
Release |
: 2012 |
ISBN-10 |
: 9201251106 |
ISBN-13 |
: 9789201251107 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Neutron Generators for Analytical Purposes by : International Atomic Energy Agency
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.