Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition
Author :
Publisher : Oxford University Press
Total Pages : 501
Release :
ISBN-10 : 9780198538646
ISBN-13 : 0198538642
Rating : 4/5 (46 Downloads)

Synopsis Neural Networks for Pattern Recognition by : Christopher M. Bishop

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Pattern Recognition and Neural Networks

Pattern Recognition and Neural Networks
Author :
Publisher : Cambridge University Press
Total Pages : 420
Release :
ISBN-10 : 0521717701
ISBN-13 : 9780521717700
Rating : 4/5 (01 Downloads)

Synopsis Pattern Recognition and Neural Networks by : Brian D. Ripley

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.

Neural Networks in Pattern Recognition and Their Applications

Neural Networks in Pattern Recognition and Their Applications
Author :
Publisher : World Scientific
Total Pages : 176
Release :
ISBN-10 : 9810207662
ISBN-13 : 9789810207663
Rating : 4/5 (62 Downloads)

Synopsis Neural Networks in Pattern Recognition and Their Applications by : Chi-hau Chen

The revitalization of neural network research in the past few years has already had a great impact on research and development in pattern recognition and artificial intelligence. Although neural network functions are not limited to pattern recognition, there is no doubt that a renewed progress in pattern recognition and its applications now critically depends on neural networks. This volume specially brings together outstanding original research papers in the area and aims to help the continued progress in pattern recognition and its applications.

Artificial Neural Networks in Pattern Recognition

Artificial Neural Networks in Pattern Recognition
Author :
Publisher : Springer
Total Pages : 415
Release :
ISBN-10 : 9783319999784
ISBN-13 : 3319999788
Rating : 4/5 (84 Downloads)

Synopsis Artificial Neural Networks in Pattern Recognition by : Luca Pancioni

This book constitutes the refereed proceedings of the 8th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2018, held in Siena, Italy, in September 2018. The 29 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 35 submissions. The papers present and discuss the latest research in all areas of neural network- and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications. Chapter "Bounded Rational Decision-Making with Adaptive Neural Network Priors" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Process Neural Networks

Process Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 240
Release :
ISBN-10 : 9783540737629
ISBN-13 : 3540737626
Rating : 4/5 (29 Downloads)

Synopsis Process Neural Networks by : Xingui He

For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Adaptive Pattern Recognition and Neural Networks

Adaptive Pattern Recognition and Neural Networks
Author :
Publisher : Addison Wesley Publishing Company
Total Pages : 344
Release :
ISBN-10 : UOM:39015012010578
ISBN-13 :
Rating : 4/5 (78 Downloads)

Synopsis Adaptive Pattern Recognition and Neural Networks by : Yoh-Han Pao

A coherent introduction to the basic concepts of pattern recognition, incorporating recent advances from AI, neurobiology, engineering, and other disciplines. Treats specifically the implementation of adaptive pattern recognition to neural networks. Annotation copyright Book News, Inc. Portland, Or.

Pattern Recognition with Neural Networks in C++

Pattern Recognition with Neural Networks in C++
Author :
Publisher : CRC Press
Total Pages : 434
Release :
ISBN-10 : 0849394627
ISBN-13 : 9780849394621
Rating : 4/5 (27 Downloads)

Synopsis Pattern Recognition with Neural Networks in C++ by : Abhijit S. Pandya

The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.

Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 310
Release :
ISBN-10 : 9783540692256
ISBN-13 : 3540692258
Rating : 4/5 (56 Downloads)

Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang

Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

From Statistics to Neural Networks

From Statistics to Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 414
Release :
ISBN-10 : 9783642791192
ISBN-13 : 3642791190
Rating : 4/5 (92 Downloads)

Synopsis From Statistics to Neural Networks by : Vladimir Cherkassky

The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.

Applications of Neural Networks

Applications of Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 346
Release :
ISBN-10 : 0792394429
ISBN-13 : 9780792394426
Rating : 4/5 (29 Downloads)

Synopsis Applications of Neural Networks by : Alan Murray

Applications of Neural Networks gives a detailed description of 13 practical applications of neural networks, selected because the tasks performed by the neural networks are real and significant. The contributions are from leading researchers in neural networks and, as a whole, provide a balanced coverage across a range of application areas and algorithms. The book is divided into three sections. Section A is an introduction to neural networks for nonspecialists. Section B looks at examples of applications using `Supervised Training'. Section C presents a number of examples of `Unsupervised Training'. For neural network enthusiasts and interested, open-minded sceptics. The book leads the latter through the fundamentals into a convincing and varied series of neural success stories -- described carefully and honestly without over-claiming. Applications of Neural Networks is essential reading for all researchers and designers who are tasked with using neural networks in real life applications.