Network Graph Analysis and Visualization with Gephi

Network Graph Analysis and Visualization with Gephi
Author :
Publisher : Packt Pub Limited
Total Pages : 116
Release :
ISBN-10 : 1783280131
ISBN-13 : 9781783280131
Rating : 4/5 (31 Downloads)

Synopsis Network Graph Analysis and Visualization with Gephi by : Ken Cherven

A practical, hands-on guide, that provides you with all the tools you need to visualize and analyze your data using network graphs with Gephi.This book is for data analysts who want to intuitively reveal patterns and trends, highlight outliers, and tell stories with their data using Gephi. It is great for anyone looking to explore interactions within network datasets, whether the data comes from social media or elsewhere. It is also a valuable resource for those seeking to learn more about Gephi without being overwhelmed by technical details.

Mastering Gephi Network Visualization

Mastering Gephi Network Visualization
Author :
Publisher : Packt Publishing Ltd
Total Pages : 378
Release :
ISBN-10 : 9781783987351
ISBN-13 : 1783987359
Rating : 4/5 (51 Downloads)

Synopsis Mastering Gephi Network Visualization by : Ken Cherven

This book is intended for anyone interested in advanced network analysis. If you wish to master the skills of analyzing and presenting network graphs effectively, then this is the book for you. No coding experience is required to use this book, although some familiarity with the Gephi user interface will be helpful.

Gephi Cookbook

Gephi Cookbook
Author :
Publisher : Packt Publishing Ltd
Total Pages : 296
Release :
ISBN-10 : 9781783987412
ISBN-13 : 1783987413
Rating : 4/5 (12 Downloads)

Synopsis Gephi Cookbook by : Devangana Khokhar

If you want to learn network analysis and visualization along with graph concepts from scratch, then this book is for you. This is ideal for those of you with little or no understanding of Gephi and this domain, but will also be beneficial for those interested in expanding their knowledge and experience.

Visualizing Data

Visualizing Data
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 384
Release :
ISBN-10 : 9780596519308
ISBN-13 : 0596519303
Rating : 4/5 (08 Downloads)

Synopsis Visualizing Data by : Ben Fry

Provides information on the methods of visualizing data on the Web, along with example projects and code.

Complex Network Analysis in Python

Complex Network Analysis in Python
Author :
Publisher : Pragmatic Bookshelf
Total Pages : 330
Release :
ISBN-10 : 9781680505405
ISBN-13 : 1680505408
Rating : 4/5 (05 Downloads)

Synopsis Complex Network Analysis in Python by : Dmitry Zinoviev

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Graph Analysis and Visualization

Graph Analysis and Visualization
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 9781118845875
ISBN-13 : 1118845870
Rating : 4/5 (75 Downloads)

Synopsis Graph Analysis and Visualization by : Richard Brath

Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.

Reinventing Capitalism in the Age of Big Data

Reinventing Capitalism in the Age of Big Data
Author :
Publisher : Basic Books
Total Pages : 239
Release :
ISBN-10 : 9780465093694
ISBN-13 : 0465093698
Rating : 4/5 (94 Downloads)

Synopsis Reinventing Capitalism in the Age of Big Data by : Viktor Mayer-Schönberger

From the New York Times bestselling author of Big Data, a prediction for how data will revolutionize the market economy and make cash, banks, and big companies obsolete In modern history, the story of capitalism has been a story of firms and financiers. That's all going to change thanks to the Big Data revolution. As Viktor Mayer-Schörger, bestselling author of Big Data, and Thomas Ramge, who writes for The Economist, show, data is replacing money as the driver of market behavior. Big finance and big companies will be replaced by small groups and individual actors who make markets instead of making things: think Uber instead of Ford, or Airbnb instead of Hyatt. This is the dawn of the era of data capitalism. Will it be an age of prosperity or of calamity? This book provides the indispensable roadmap for securing a better future.

Statistical Analysis of Network Data with R

Statistical Analysis of Network Data with R
Author :
Publisher : Springer
Total Pages : 214
Release :
ISBN-10 : 9781493909834
ISBN-13 : 1493909835
Rating : 4/5 (34 Downloads)

Synopsis Statistical Analysis of Network Data with R by : Eric D. Kolaczyk

Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

Analyzing the Social Web

Analyzing the Social Web
Author :
Publisher : Newnes
Total Pages : 291
Release :
ISBN-10 : 9780124058569
ISBN-13 : 0124058566
Rating : 4/5 (69 Downloads)

Synopsis Analyzing the Social Web by : Jennifer Golbeck

Analyzing the Social Web provides a framework for the analysis of public data currently available and being generated by social networks and social media, like Facebook, Twitter, and Foursquare. Access and analysis of this public data about people and their connections to one another allows for new applications of traditional social network analysis techniques that let us identify things like who are the most important or influential people in a network, how things will spread through the network, and the nature of peoples' relationships. Analyzing the Social Web introduces you to these techniques, shows you their application to many different types of social media, and discusses how social media can be used as a tool for interacting with the online public. - Presents interactive social applications on the web, and the types of analysis that are currently conducted in the study of social media - Covers the basics of network structures for beginners, including measuring methods for describing nodes, edges, and parts of the network - Discusses the major categories of social media applications or phenomena and shows how the techniques presented can be applied to analyze and understand the underlying data - Provides an introduction to information visualization, particularly network visualization techniques, and methods for using them to identify interesting features in a network, generate hypotheses for analysis, and recognize patterns of behavior - Includes a supporting website with lecture slides, exercises, and downloadable social network data sets that can be used can be used to apply the techniques presented in the book

Python for Graph and Network Analysis

Python for Graph and Network Analysis
Author :
Publisher : Springer
Total Pages : 214
Release :
ISBN-10 : 9783319530048
ISBN-13 : 3319530046
Rating : 4/5 (48 Downloads)

Synopsis Python for Graph and Network Analysis by : Mohammed Zuhair Al-Taie

This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.