Negative Thermal Expansion Materials

Negative Thermal Expansion Materials
Author :
Publisher : Materials Research Forum LLC
Total Pages : 179
Release :
ISBN-10 : 9781945291494
ISBN-13 : 1945291494
Rating : 4/5 (94 Downloads)

Synopsis Negative Thermal Expansion Materials by : D.J. Fisher

In everyday life, minute thermally-induced elongations are essentially invisible to the naked eye; but even minute expansions can fatally degrade device processing and performance in – for example – the semiconductor industry. Materials which, astonishingly, contract upon heating offer the great advantage of being able to tune the overall thermal expansion of composite materials or to act as thermal-expansion compensators. The development of these negative thermal expansion materials has advanced rapidly during the past fifteen years, and a wide variety of materials of differing types has now been identified, as well as a number of intriguing mechanisms which help to avoid the apparent inviolable tendency of size to increase with temperature. The present work is the most up-to-date summary of the current range of negative thermal expansion materials and of the associated mechanisms. Negative Thermal Expansion Materials, Thermomiotic Behavior, Thermal Stress-Fracture, Thermal Expansion of Composites, Thin-Film Design, Metamaterials

Underneath the Bragg Peaks

Underneath the Bragg Peaks
Author :
Publisher : Elsevier
Total Pages : 424
Release :
ISBN-10 : 9780080426983
ISBN-13 : 0080426980
Rating : 4/5 (83 Downloads)

Synopsis Underneath the Bragg Peaks by : Takeshi Egami

Table of contents

Mechanics of Metamaterials with Negative Parameters

Mechanics of Metamaterials with Negative Parameters
Author :
Publisher : Springer Nature
Total Pages : 702
Release :
ISBN-10 : 9789811564468
ISBN-13 : 9811564469
Rating : 4/5 (68 Downloads)

Synopsis Mechanics of Metamaterials with Negative Parameters by : Teik-Cheng Lim

This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson’s ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.

Ultra-High Temperature Materials I

Ultra-High Temperature Materials I
Author :
Publisher : Springer
Total Pages : 800
Release :
ISBN-10 : 9789400775879
ISBN-13 : 9400775873
Rating : 4/5 (79 Downloads)

Synopsis Ultra-High Temperature Materials I by : Igor L. Shabalin

This exhaustive work in three volumes with featuring cross-reference system provides a thorough overview of ultra-high temperature materials – from elements and chemical compounds to alloys and composites. Topics included are physical (crystallographic, thermodynamic, thermo-physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases and multi-phase materials with melting (or sublimation) points over or about 2500 °C. The first volume focuses on carbon (graphite/graphene) and refractory metals (W, Re, Os, Ta, Mo, Nb, Ir). The second and third volumes are dedicated solely to refractory (ceramic) compounds (oxides, nitrides, carbides, borides, silicides) and to the complex materials – refractory alloys, carbon and ceramic composites, respectively. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students in various disciplines alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science, nanotechnology and engineering.

Residual Stresses in Composite Materials

Residual Stresses in Composite Materials
Author :
Publisher : Woodhead Publishing
Total Pages : 407
Release :
ISBN-10 : 9780857098597
ISBN-13 : 0857098594
Rating : 4/5 (97 Downloads)

Synopsis Residual Stresses in Composite Materials by : Mahmood M. Shokrieh

Residual stresses are a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, light-weight materials such as composites and their wide range of applications in the aerospace and automotive industries, in civil infrastructure and in sporting applications, it is critical that the residual stresses of composite materials are understood and measured correctly.The first part of this important book reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. Various mathematical (analytical and numerical) methods for calculation of residual stresses in composite materials are also presented. Chapters in the first section of the book discuss the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses residual stresses in polymer matrix, metal-matrix and a range of other types of composites. Moreover, the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses is discussed.Residual stresses in composite materials provides a comprehensive overview of this important topic, and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine and sporting industries. - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in polymer matrix, metal-matrix and other types of composite - Considers the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses

Heat Capacity and Thermal Expansion at Low Temperatures

Heat Capacity and Thermal Expansion at Low Temperatures
Author :
Publisher : Springer Science & Business Media
Total Pages : 342
Release :
ISBN-10 : 9781461546955
ISBN-13 : 1461546958
Rating : 4/5 (55 Downloads)

Synopsis Heat Capacity and Thermal Expansion at Low Temperatures by : T.H.K. Barron

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.

Thermal Properties of Solids at Room and Cryogenic Temperatures

Thermal Properties of Solids at Room and Cryogenic Temperatures
Author :
Publisher : Springer
Total Pages : 220
Release :
ISBN-10 : 9789401789691
ISBN-13 : 940178969X
Rating : 4/5 (91 Downloads)

Synopsis Thermal Properties of Solids at Room and Cryogenic Temperatures by : Guglielmo Ventura

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review

ASM Ready Reference

ASM Ready Reference
Author :
Publisher : ASM International
Total Pages : 564
Release :
ISBN-10 : 9780871707680
ISBN-13 : 0871707683
Rating : 4/5 (80 Downloads)

Synopsis ASM Ready Reference by : Fran Cverna

A quick and easy to use source for qualified thermal properties of metals and alloys. The data tables are arranged by material hierarchy, with summary tables sorted by property value. Values are given for a range of high and low temperatures. Short technical discussions at the beginning of each chapter are designed to refresh the reader's understanding of the properties and units covered in that section

Nanopapers

Nanopapers
Author :
Publisher : William Andrew
Total Pages : 272
Release :
ISBN-10 : 9780323480208
ISBN-13 : 0323480209
Rating : 4/5 (08 Downloads)

Synopsis Nanopapers by : Wenyi Huang

Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications gives a comprehensive overview of the emerging technology of nanopapers. Exploring the latest developments on nanopapers in nanomaterials chemistry and nanomanufacturing technologies, this book outlines the unique properties of nanopapers and their advanced applications. Nanopapers are thin sheets or films made of nanomaterials such as carbon nanotubes, carbon nanofibers, nanoclays, cellulose nanofibrils, and graphene nanoplatelets. Noticeably, nanopapers allow highly concentrated nanoparticles to be tightly packed in a thin film to reach unique properties such as very high electrical and thermal conductivities, very low diffusivity, and strong corrosion resistance that are shared by conventional polymer nanocomposites. This book presents a concise introduction to nanopapers, covering concepts, terminology and applications. It outlines both current applications and future possibilities, and will be of great use to nanochemistry and nanomanufacturing researchers and engineers who want to learn more about how nanopapers can be applied. - Outlines the main uses of nanopapers, showing readers how this emerging technology should best be applied - Shows how the unique properties of nanopapers make them adaptable for use in a wide range of applications - Explores methods for the nanomanufacture of nanopapers