Natural Language Processing and Text Mining

Natural Language Processing and Text Mining
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9781846287541
ISBN-13 : 1846287545
Rating : 4/5 (41 Downloads)

Synopsis Natural Language Processing and Text Mining by : Anne Kao

Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.

Text Analytics with Python

Text Analytics with Python
Author :
Publisher : Apress
Total Pages : 688
Release :
ISBN-10 : 9781484243541
ISBN-13 : 1484243544
Rating : 4/5 (41 Downloads)

Synopsis Text Analytics with Python by : Dipanjan Sarkar

Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.

Text Mining with R

Text Mining with R
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 193
Release :
ISBN-10 : 9781491981627
ISBN-13 : 1491981628
Rating : 4/5 (27 Downloads)

Synopsis Text Mining with R by : Julia Silge

Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.

Data Mining and Reverse Engineering

Data Mining and Reverse Engineering
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 0412822504
ISBN-13 : 9780412822506
Rating : 4/5 (04 Downloads)

Synopsis Data Mining and Reverse Engineering by : Stefano Spaccapietra

Searching for Semantics: Data Mining, Reverse Engineering Stefano Spaccapietra Fred M aryanski Swiss Federal Institute of Technology University of Connecticut Lausanne, Switzerland Storrs, CT, USA REVIEW AND FUTURE DIRECTIONS In the last few years, database semantics research has turned sharply from a highly theoretical domain to one with more focus on practical aspects. The DS- 7 Working Conference held in October 1997 in Leysin, Switzerland, demon strated the more pragmatic orientation of the current generation of leading researchers. The papers presented at the meeting emphasized the two major areas: the discovery of semantics and semantic data modeling. The work in the latter category indicates that although object-oriented database management systems have emerged as commercially viable prod ucts, many fundamental modeling issues require further investigation. Today's object-oriented systems provide the capability to describe complex objects and include techniques for mapping from a relational database to objects. However, we must further explore the expression of information regarding the dimensions of time and space. Semantic models possess the richness to describe systems containing spatial and temporal data. The challenge of in corporating these features in a manner that promotes efficient manipulation by the subject specialist still requires extensive development.

Natural Language Processing with Python

Natural Language Processing with Python
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 506
Release :
ISBN-10 : 9780596555719
ISBN-13 : 0596555717
Rating : 4/5 (19 Downloads)

Synopsis Natural Language Processing with Python by : Steven Bird

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Applied Text Analysis with Python

Applied Text Analysis with Python
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 328
Release :
ISBN-10 : 9781491962992
ISBN-13 : 1491962992
Rating : 4/5 (92 Downloads)

Synopsis Applied Text Analysis with Python by : Benjamin Bengfort

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity

Natural Language Processing for Online Applications

Natural Language Processing for Online Applications
Author :
Publisher : John Benjamins Publishing
Total Pages : 243
Release :
ISBN-10 : 9789027292445
ISBN-13 : 9027292442
Rating : 4/5 (45 Downloads)

Synopsis Natural Language Processing for Online Applications by : Peter Jackson

This text covers the technologies of document retrieval, information extraction, and text categorization in a way which highlights commonalities in terms of both general principles and practical concerns. It assumes some mathematical background on the part of the reader, but the chapters typically begin with a non-mathematical account of the key issues. Current research topics are covered only to the extent that they are informing current applications; detailed coverage of longer term research and more theoretical treatments should be sought elsewhere. There are many pointers at the ends of the chapters that the reader can follow to explore the literature. However, the book does maintain a strong emphasis on evaluation in every chapter both in terms of methodology and the results of controlled experimentation.

Biomedical Natural Language Processing

Biomedical Natural Language Processing
Author :
Publisher : John Benjamins Publishing Company
Total Pages : 174
Release :
ISBN-10 : 9789027271068
ISBN-13 : 9027271062
Rating : 4/5 (68 Downloads)

Synopsis Biomedical Natural Language Processing by : Kevin Bretonnel Cohen

Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Text Mining with MATLAB®

Text Mining with MATLAB®
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1489994645
ISBN-13 : 9781489994646
Rating : 4/5 (45 Downloads)

Synopsis Text Mining with MATLAB® by : Rafael E. Banchs

Text Mining with MATLAB provides a comprehensive introduction to text mining using MATLAB. It’s designed to help text mining practitioners, as well as those with little-to-no experience with text mining in general, familiarize themselves with MATLAB and its complex applications. The first part provides an introduction to basic procedures for handling and operating with text strings. Then, it reviews major mathematical modeling approaches. Statistical and geometrical models are also described along with main dimensionality reduction methods. Finally, it presents some specific applications such as document clustering, classification, search and terminology extraction. All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.

Deep Natural Language Processing and AI Applications for Industry 5.0

Deep Natural Language Processing and AI Applications for Industry 5.0
Author :
Publisher : IGI Global
Total Pages : 240
Release :
ISBN-10 : 9781799877301
ISBN-13 : 1799877302
Rating : 4/5 (01 Downloads)

Synopsis Deep Natural Language Processing and AI Applications for Industry 5.0 by : Tanwar, Poonam

To sustain and stay at the top of the market and give absolute comfort to the consumers, industries are using different strategies and technologies. Natural language processing (NLP) is a technology widely penetrating the market, irrespective of the industry and domains. It is extensively applied in businesses today, and it is the buzzword in every engineer’s life. NLP can be implemented in all those areas where artificial intelligence is applicable either by simplifying the communication process or by refining and analyzing information. Neural machine translation has improved the imitation of professional translations over the years. When applied in neural machine translation, NLP helps educate neural machine networks. This can be used by industries to translate low-impact content including emails, regulatory texts, etc. Such machine translation tools speed up communication with partners while enriching other business interactions. Deep Natural Language Processing and AI Applications for Industry 5.0 provides innovative research on the latest findings, ideas, and applications in fields of interest that fall under the scope of NLP including computational linguistics, deep NLP, web analysis, sentiments analysis for business, and industry perspective. This book covers a wide range of topics such as deep learning, deepfakes, text mining, blockchain technology, and more, making it a crucial text for anyone interested in NLP and artificial intelligence, including academicians, researchers, professionals, industry experts, business analysts, data scientists, data analysts, healthcare system designers, intelligent system designers, practitioners, and students.