Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices
Author :
Publisher : Woodhead Publishing
Total Pages : 487
Release :
ISBN-10 : 9781782422242
ISBN-13 : 1782422242
Rating : 4/5 (42 Downloads)

Synopsis Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices by : Serge Zhuiykov

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. After explaining the physics affecting the conductivity and electron arrangement of nanostructured semiconductors, the book addresses the structural and chemical modification of semiconductor nanocrystals during material growth. It then covers their use in nanoscale functional devices, particularly in electronic devices and carbon nanotubes. It explores the impact of 2D nanocrystals, such as graphene, chalcogenides, and oxide nanostructures, on research and technology, leading to a discussion of incorporating graphene and semiconductor nanostructures into composites for use in energy storage. The final three chapters focus on the applications of these functional materials in photovoltaic cells, solid oxide fuel cells, and in environmental sensors including pH, dissolved oxygen, dissolved organic carbon, and dissolved metal ion sensors. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices is a crucial resource for scientists, applied researchers, and production engineers working in the fabrication, design, testing, characterization, and analysis of new semiconductor materials. This book is a valuable reference for those working in the analysis and characterization of new nanomaterials, and for those who develop technologies for practical devices fabrication. - Focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors - Reviews fundamental physics of conductivity and electron arrangement before proceeding to practical applications - A vital resource for applied researchers and production engineers working with new semiconductor materials

Nanostructured Semiconductors

Nanostructured Semiconductors
Author :
Publisher : Woodhead Publishing
Total Pages : 568
Release :
ISBN-10 : 9780081019207
ISBN-13 : 0081019203
Rating : 4/5 (07 Downloads)

Synopsis Nanostructured Semiconductors by : Serge Zhuiykov

Nanostructured Semiconductors focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. Since the first edition of the book, there has been significant progress in the development of new functional nanomaterials with unique and sometimes unpredictable quantum-confined properties within the class what it called two-dimensional (2D) semiconductors. These nanocrystals represent extremely thin nano-structures with thickness of just few nano-meters. Since that time, not only were 2D semiconductor oxides further developed, more importantly, 2D metal dichalcogenides, such as MoS2, MoSe2, WS2, WSe2 and others also progressed significantly in their development demonstrating their superior properties compared to their bulk and microstructural counterparts. The book has been expanded to include these advancements. The book begins with the structure and properties of semiconductor nanocrystals (chapter 1), addresses electronic device applications (chapter 2), discusses 2-Dimensional oxides and dichalcogenide semiconductors (chapters 3 through 5), and ends with energy, environment, and bio applications (chapters 6 through 8). - Focuses on the development of semiconductor nanocrystals and their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells and chemical sensors - Include other 2D materials, such as dichalcogenides to present a comprehensive resource on the latest advancements in nanostructured semiconductors - Reviews the fundamental physics of conductivity and electron arrangement before proceeding to practical applications - Contains a unique chapter dedicated to the new atomic layer deposition (ALD) technique which has the ability to develop 2D nanostructures with great precision

Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications

Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications
Author :
Publisher : CRC Press
Total Pages : 341
Release :
ISBN-10 : 9781000072464
ISBN-13 : 1000072460
Rating : 4/5 (64 Downloads)

Synopsis Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications by : Mohammad Karbalaei Akbari

Offering perspective on both the scientific and engineering aspects of 2D semiconductors, Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications discusses how to successfully engineer 2D materials for practical applications. It also covers several novel topics regarding 2D semiconductors which have not yet been discussed in any other publications. Features: Provides comprehensive information and data about wafer-scale deposition of 2D semiconductors, ranging from scientific discussions up to the planning of experiments and reliability testing of the fabricated samples Precisely discusses wafer-scale ALD and CVD of 2D semiconductors and investigates various aspects of deposition techniques Covers the new group of 2D materials synthesized from surface oxide of liquid metals and also explains the device fabrication and post-treatment of these 2D nanostructures Addresses a wide range of scientific and practical applications of 2D semiconductors and electronic and optoelectronic devices based on these nanostructures Offers novel coverage of 2D heterostructures and heterointerfaces and provides practical information about fabrication and application of these heterostructures Introduces the latest advancement in fabrication of novel memristors, artificial synapses and sensorimotor devices based on 2D semiconductors This work offers practical information valuable for engineering applications that will appeal to researchers, academics, and scientists working with and interested in developing an array of semiconductor electronic devices.

Surface Modified Nanomaterials for Applications in Catalysis

Surface Modified Nanomaterials for Applications in Catalysis
Author :
Publisher : Elsevier
Total Pages : 392
Release :
ISBN-10 : 9780128236024
ISBN-13 : 0128236027
Rating : 4/5 (24 Downloads)

Synopsis Surface Modified Nanomaterials for Applications in Catalysis by : Manoj B. Gawande

Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering. - Provides an overview of the basic principles of surface modification of nanomaterials - Reviews useful fabrication and characterization methodologies for key applications - Addresses surface modified nanomaterials for applications in catalysis, energy, sensor, environment, and more

Semiconductor Materials and Modelling for Solar Cells

Semiconductor Materials and Modelling for Solar Cells
Author :
Publisher : Materials Research Forum LLC
Total Pages : 94
Release :
ISBN-10 : 9781644901434
ISBN-13 : 1644901439
Rating : 4/5 (34 Downloads)

Synopsis Semiconductor Materials and Modelling for Solar Cells by : Z. Pezeshki

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading. Keywords: Solar Cells, Thin Film Solar Cells, Solar Cell Efficiency, Semiconductor Materials, Surface Recombination Velocity, Charge Density, High UV Sensitivity, Heavily-doped Silicon Wafers, Amorphous Semiconductors, Nanocrystalline Semiconductors, Field Effect, Ferroelectric Semiconductors, Solar Cell Modelling.

Magnetic Nano- and Microwires

Magnetic Nano- and Microwires
Author :
Publisher : Woodhead Publishing
Total Pages : 847
Release :
ISBN-10 : 9780081001813
ISBN-13 : 0081001819
Rating : 4/5 (13 Downloads)

Synopsis Magnetic Nano- and Microwires by : Manuel Vázquez

Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. - Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires - Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications - Combines the expertise of specialists from around the globe to give a broad overview of current and future trends

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing
Author :
Publisher : Woodhead Publishing
Total Pages : 328
Release :
ISBN-10 : 9780081002612
ISBN-13 : 0081002610
Rating : 4/5 (12 Downloads)

Synopsis Directed Self-assembly of Block Co-polymers for Nano-manufacturing by : Roel Gronheid

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. - Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic - Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing - Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides
Author :
Publisher : Elsevier
Total Pages : 505
Release :
ISBN-10 : 9781782422556
ISBN-13 : 1782422552
Rating : 4/5 (56 Downloads)

Synopsis Epitaxial Growth of Complex Metal Oxides by : Gertjan Koster

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three. - Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes - Examines the techniques used in epitaxial thin film growth - Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects

ZnO and Their Hybrid Nano-Structures

ZnO and Their Hybrid Nano-Structures
Author :
Publisher : Materials Research Forum LLC
Total Pages : 333
Release :
ISBN-10 : 9781644902394
ISBN-13 : 1644902397
Rating : 4/5 (94 Downloads)

Synopsis ZnO and Their Hybrid Nano-Structures by : Gaurav Sharma

ZnO and its hybrid nanostructures have unique optical, physical and chemical properties. The book covers recent trends in processing techniques and applications. Topics include solar cells, photo-voltaic devices, fuel cells, uv filters, lasers, light-emitting diodes, photo-detectors, spin-tronic devices, magnetic semiconductors, nano-generators, piezotronics, photo-catalytic applications against harmful organic pollutants like dyes, heavy metals, antibiotics, and sensors such as bio sensors, chemical sensors, gas sensors. Keywords: ZnO, Nano ZnO, Point Defects, Magnetic Semiconductors, Hybrid Nanostructures, Cell Applications, Nanoadsorbant for Heavy Metal Removals, Diagnostics, ZnO Nano-Carriers, ZnO Thin Films Fabrication.

Encyclopedia of Interfacial Chemistry

Encyclopedia of Interfacial Chemistry
Author :
Publisher : Elsevier
Total Pages : 5276
Release :
ISBN-10 : 9780128098943
ISBN-13 : 0128098945
Rating : 4/5 (43 Downloads)

Synopsis Encyclopedia of Interfacial Chemistry by :

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions