Nanoscale Transistors

Nanoscale Transistors
Author :
Publisher : Springer Science & Business Media
Total Pages : 223
Release :
ISBN-10 : 9780387280035
ISBN-13 : 0387280030
Rating : 4/5 (35 Downloads)

Synopsis Nanoscale Transistors by : Mark Lundstrom

To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Nanoscale Device Physics

Nanoscale Device Physics
Author :
Publisher : Oxford University Press
Total Pages : 682
Release :
ISBN-10 : 9780191078040
ISBN-13 : 0191078042
Rating : 4/5 (40 Downloads)

Synopsis Nanoscale Device Physics by : Sandip Tiwari

Nanoscale devices differ from larger microscale devices because they depend on the physical phenomena and effects that are central to their operation. This textbook illuminates the behavior of nanoscale devices by connecting them to the electronic, as well as magnetic, optical and mechanical properties, which fundamentally affect nanoscale devices in fascinating ways. Their small size means that an understanding of the phenomena measured is even more important, as their effects are so dominant and the changes in scale of underlying energetics and response are significant. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the interactions, and others. These interactions, with the limits on size, make their physical behavior interesting, important and useful. The collection of four textbooks in the Electroscience Series culminates in a comprehensive understanding of nanoscale devices — electronic, magnetic, mechanical and optical — in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.

Theoretical Foundations of Nanoscale Quantum Devices

Theoretical Foundations of Nanoscale Quantum Devices
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9781108475662
ISBN-13 : 1108475663
Rating : 4/5 (62 Downloads)

Synopsis Theoretical Foundations of Nanoscale Quantum Devices by : Malin Premaratne

This self-contained text describes the underlying theory and approximate quantum models of real nanodevices for nanotechnology applications.

Nanoscale Devices

Nanoscale Devices
Author :
Publisher : CRC Press
Total Pages : 414
Release :
ISBN-10 : 9781351670210
ISBN-13 : 1351670212
Rating : 4/5 (10 Downloads)

Synopsis Nanoscale Devices by : Brajesh Kumar Kaushik

The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter

Physics and Modeling of Tera-and Nano-devices

Physics and Modeling of Tera-and Nano-devices
Author :
Publisher : World Scientific
Total Pages : 194
Release :
ISBN-10 : 9789812779045
ISBN-13 : 9812779043
Rating : 4/5 (45 Downloads)

Synopsis Physics and Modeling of Tera-and Nano-devices by : Maxim Ryzhii

Physics and Modeling of Tera- and Nano-Devices is a compilation of papers by well-respected researchers working in the field of physics and modeling of novel electronic and optoelectronic devices. The topics covered include devices based on carbon nanotubes, generation and detection of terahertz radiation in semiconductor structures including terahertz plasma oscillations and instabilities, terahertz photomixing in semiconductor heterostructures, spin and microwave-induced phenomena in low-dimensional systems, and various computational aspects of device modeling. Researchers as well as graduate and postgraduate students working in this field will benefit from reading this book.

Modeling Self-Heating Effects in Nanoscale Devices

Modeling Self-Heating Effects in Nanoscale Devices
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 148
Release :
ISBN-10 : 9781681741871
ISBN-13 : 1681741873
Rating : 4/5 (71 Downloads)

Synopsis Modeling Self-Heating Effects in Nanoscale Devices by : Katerina Raleva

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.

Physics of Semiconductor Microcavities

Physics of Semiconductor Microcavities
Author :
Publisher : John Wiley & Sons
Total Pages : 328
Release :
ISBN-10 : 9783527610167
ISBN-13 : 3527610162
Rating : 4/5 (67 Downloads)

Synopsis Physics of Semiconductor Microcavities by : Benoit Deveaud

Electron and photon confinement in semiconductor nanostructures is one of the most active areas in solid state research. Written by leading experts in solid state physics, this book provides both a comprehensive review as well as a excellent introduction to fundamental and applied aspects of light-matter coupling in microcavities. Topics covered include parametric amplification and polariton liquids, quantum fluid and non-linear dynamical effects and parametric instabilities, polariton squeezing, Bose-Einstein condensation of microcavity polaritons, spin dynamics of exciton-polaritons, polariton correlation produced by parametric scattering, progress in III-nitride distributed Bragg reflectors using AlInN/GaN materials, high efficiency planar MCLEDs, exciton-polaritons and nanoscale cavities in photonic crystals, and MBE growth of high finesse microcavities.

Nanoscale Devices - Fundamentals and Applications

Nanoscale Devices - Fundamentals and Applications
Author :
Publisher : Springer
Total Pages : 378
Release :
ISBN-10 : 1402051050
ISBN-13 : 9781402051050
Rating : 4/5 (50 Downloads)

Synopsis Nanoscale Devices - Fundamentals and Applications by : Rudolf Gross

This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.

Nanoscale Electronic Devices and Their Applications

Nanoscale Electronic Devices and Their Applications
Author :
Publisher : CRC Press
Total Pages : 268
Release :
ISBN-10 : 9781000163568
ISBN-13 : 1000163563
Rating : 4/5 (68 Downloads)

Synopsis Nanoscale Electronic Devices and Their Applications by : Khurshed Ahmad Shah

Nanoscale Electronic Devices and Their Applications helps readers acquire a thorough understanding of the fundamentals of solids at the nanoscale level in addition to their applications including operation and properties of recent nanoscale devices. This book includes seven chapters that give an overview of electrons in solids, carbon nanotube devices and their applications, doping techniques, construction and operational details of channel-engineered MOSFETs, and spintronic devices and their applications. Structural and operational features of phase-change memory (PCM), memristor, and resistive random-access memory (ReRAM) are also discussed. In addition, some applications of these phase-change devices to logic designs have been presented. Aimed at senior undergraduate students in electrical engineering, micro-electronics engineering, physics, and device physics, this book:  Covers a wide area of nanoscale devices while explaining the fundamental physics in these devices  Reviews information on CNT two- and three-probe devices, spintronic devices, CNT interconnects, CNT memories, and NDR in CNT FETs  Discusses spin-controlled devices and their applications, multi-material devices, and gates in addition to phase-change devices  Includes rigorous mathematical derivations of the semiconductor physics  Illustrates major concepts thorough discussions and various diagrams

Light-Matter Interaction

Light-Matter Interaction
Author :
Publisher : Oxford University Press
Total Pages : 276
Release :
ISBN-10 : 9780198567653
ISBN-13 : 0198567650
Rating : 4/5 (53 Downloads)

Synopsis Light-Matter Interaction by : John Weiner

This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrödinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations. The structure of the book is designed around five principal chapters, but many of the chapters have extensive "complements" that either treat important digressions from the main body or penetrate deeper into some fundamental issue. Furthermore, at the end of the book are several appendices to provide readers with a convenient reference for frequently-occurring special functions and explanations of the analytical tools, such as vector calculus and phasors, needed to express important results in electromagnetics and waveguide theory.