Nanofibers of Conjugated Polymers

Nanofibers of Conjugated Polymers
Author :
Publisher : CRC Press
Total Pages : 297
Release :
ISBN-10 : 9789814613521
ISBN-13 : 9814613525
Rating : 4/5 (21 Downloads)

Synopsis Nanofibers of Conjugated Polymers by : A. Sezai Sarac

Conjugated polymer composites with high dielectric constants are being developed by the electronics industry in response to the need for power-grounded decoupling to secure the integrity of high-speed signals and to reduce electromagnetic interference. Electrically conducting polymers are materials that simultaneously possess the physical and chemical properties of organic polymers and the electronic characteristics of metals. Multifunctional micro- and nanostructures of conjugated polymers, such as of pyrrole, have received great attention in recent years because they can polymerize easily and have high conductivity and good thermal stability. They, however, have some disadvantages such as brittleness and hard processability, which can be overcome by developing their nanocomposites. Nanofiber materials with different dielectric properties can be made from conjugated polymer composites and used in the electronics industry, in sensors and batteries, for electrical stimulation to enhance nerve-regeneration process, and for constructing scaffolds for nerve tissue engineering. Electrospinning is a versatile technique that is used to produce ultrathin continuous fibers with high surface-to-volume and aspect ratios from a variety of materials, including polymers, composites, and ceramics. Conductive materials in fibrillar shape may be advantageous compared with films because of their inherent properties such as anisotropy, high surface area, and mechanical strength. They are of particular interest in electroactive composites as they can be efficiently distributed in an insulating polymer matrix to improve both electrical and mechanical properties. Combination of electrical properties with good mechanical performance is of particular interest in electroactive polymer technology. This book covers the general aspects of electrospinning and discusses the fundamental concepts that can be used to produce nanofibers with the help of mathematical models and equations. It also details the methods through which different polymeric structures can be included in conjugated polymers during electrospinning to form composites or blends of conjugated polymer nanofibers.

Nanofibers of Conjugated Polymers

Nanofibers of Conjugated Polymers
Author :
Publisher : CRC Press
Total Pages : 211
Release :
ISBN-10 : 9781315341286
ISBN-13 : 131534128X
Rating : 4/5 (86 Downloads)

Synopsis Nanofibers of Conjugated Polymers by : A. Sezai Sarac

Conjugated polymer composites with high dielectric constants are being developed by the electronics industry in response to the need for power-grounded decoupling to secure the integrity of high-speed signals and to reduce electromagnetic interference. Electrically conducting polymers are materials that simultaneously possess the physical and chemical properties of organic polymers and the electronic characteristics of metals. Multifunctional micro- and nanostructures of conjugated polymers, such as of pyrrole, have received great attention in recent years because they can polymerize easily and have high conductivity and good thermal stability. They, however, have some disadvantages such as brittleness and hard processability, which can be overcome by developing their nanocomposites. Nanofiber materials with different dielectric properties can be made from conjugated polymer composites and used in the electronics industry, in sensors and batteries, for electrical stimulation to enhance nerve-regeneration process, and for constructing scaffolds for nerve tissue engineering. Electrospinning is a versatile technique that is used to produce ultrathin continuous fibers with high surface-to-volume and aspect ratios from a variety of materials, including polymers, composites, and ceramics. Conductive materials in fibrillar shape may be advantageous compared with films because of their inherent properties such as anisotropy, high surface area, and mechanical strength. They are of particular interest in electroactive composites as they can be efficiently distributed in an insulating polymer matrix to improve both electrical and mechanical properties. Combination of electrical properties with good mechanical performance is of particular interest in electroactive polymer technology. This book covers the general aspects of electrospinning and discusses the fundamental concepts that can be used to produce nanofibers with the help of mathematical models and equations. It also details the methods through which different polymeric structures can be included in conjugated polymers during electrospinning to form composites or blends of conjugated polymer nanofibers.

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 38
Release :
ISBN-10 : 9783527345571
ISBN-13 : 3527345574
Rating : 4/5 (71 Downloads)

Synopsis Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications by : Srabanti Ghosh

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.

Conducting Polymer-Based Nanocomposites

Conducting Polymer-Based Nanocomposites
Author :
Publisher : Elsevier
Total Pages : 306
Release :
ISBN-10 : 9780128224632
ISBN-13 : 0128224630
Rating : 4/5 (32 Downloads)

Synopsis Conducting Polymer-Based Nanocomposites by : Ayesha Kausar

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Polymer Nanofibers

Polymer Nanofibers
Author :
Publisher : Royal Society of Chemistry
Total Pages : 445
Release :
ISBN-10 : 9781849737746
ISBN-13 : 1849737746
Rating : 4/5 (46 Downloads)

Synopsis Polymer Nanofibers by : Dario Pisignano

Research into polymer nanofibers has increased significantly over the last decade, prompting the need for a comprehensive monograph examining the subject as knowledge of their properties and potential applications has increased. Postgraduate students and researchers new to the field will benefit from the "from materials to applications" approach to the book, which examines the physio-chemical properties in detail, demonstrating how they can be exploited for a diverse range of applications, including the production of light and wound dressings. Techniques for the fabrication, notably electrospinning, are discussed at length. This book provides a unique and accessible source of information, summarising the last decade of the field and presenting an entry point for those entering the field and an inspiration to established workers. The author is currently the national coordinator for several research projects examining the applications of polymer nanofibers, alongside active international collaborations.

Conjugated Polymers

Conjugated Polymers
Author :
Publisher : CRC Press
Total Pages : 1030
Release :
ISBN-10 : 9781420043594
ISBN-13 : 1420043595
Rating : 4/5 (94 Downloads)

Synopsis Conjugated Polymers by : Terje A. Skotheim

Many significant fundamental concepts and practical applications have developed since the publication of the best-selling second edition of the Handbook of Conducting Polymers. Now divided into two books, the third edition continues to retain the excellent expertise of the editors and world-renowned contributors while providing superior coverage of

Electrospun Nanofibers

Electrospun Nanofibers
Author :
Publisher : Woodhead Publishing
Total Pages : 650
Release :
ISBN-10 : 9780081009116
ISBN-13 : 0081009119
Rating : 4/5 (16 Downloads)

Synopsis Electrospun Nanofibers by : Mehdi Afshari

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science

Semiconducting Polymers

Semiconducting Polymers
Author :
Publisher : John Wiley & Sons
Total Pages : 786
Release :
ISBN-10 : 9783527312719
ISBN-13 : 3527312714
Rating : 4/5 (19 Downloads)

Synopsis Semiconducting Polymers by : Georges Hadziioannou

The field of semiconducting polymers has attracted many researchers from a diversity of disciplines. Printed circuitry, flexible electronics and displays are already migrating from laboratory successes to commercial applications, but even now fundamental knowledge is deficient concerning some of the basic phenomena that so markedly influence a device's usefulness and competitiveness. This two-volume handbook describes the various approaches to doped and undoped semiconducting polymers taken with the aim to provide vital understanding of how to control the properties of these fascinating organic materials. Prominent researchers from the fields of synthetic chemistry, physical chemistry, engineering, computational chemistry, theoretical physics, and applied physics cover all aspects from compounds to devices. Since the first edition was published in 2000, significant findings and successes have been achieved in the field, and especially handheld electronic gadgets have become billion-dollar markets that promise a fertile application ground for flexible, lighter and disposable alternatives to classic silicon circuitry. The second edition brings readers up-to-date on cutting edge research in this field.

Polymers for Light-emitting Devices and Displays

Polymers for Light-emitting Devices and Displays
Author :
Publisher : John Wiley & Sons
Total Pages : 288
Release :
ISBN-10 : 9781119654605
ISBN-13 : 1119654602
Rating : 4/5 (05 Downloads)

Synopsis Polymers for Light-emitting Devices and Displays by : Inamuddin

Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.

Single Molecule Spectroscopy

Single Molecule Spectroscopy
Author :
Publisher : Springer Science & Business Media
Total Pages : 375
Release :
ISBN-10 : 9783642565441
ISBN-13 : 3642565441
Rating : 4/5 (41 Downloads)

Synopsis Single Molecule Spectroscopy by : R. Rigler

The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.