Multicomponent Flow Modeling

Multicomponent Flow Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 334
Release :
ISBN-10 : 9781461215806
ISBN-13 : 1461215803
Rating : 4/5 (06 Downloads)

Synopsis Multicomponent Flow Modeling by : Vincent Giovangigli

The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Our aim in the chapters is to treat the general situation of multicomponent flows, taking into account complex chemistry and detailed transport phe nomena. In this book, we have adopted an interdisciplinary approach that en compasses a physical, mathematical, and numerical point of view. In par ticular, the links between molecular models, macroscopic models, mathe matical structure, and mathematical properties are emphasized. We also often mention flame models since combustion is an excellent prototype of multicomponent flow. This book still does not pretend to be a complete survey of existing models and related mathematical results. In particular, many subjects like multi phase-flows , turbulence modeling, specific applications, porous me dia, biological models, or magneto-hydrodynamics are not covered. We rather emphasize the fundamental modeling of multicomponent gaseous flows and the qualitative properties of the resulting systems of partial dif ferential equations. Part of this book was taught at the post-graduate level at the Uni versity of Paris, the University of Versailles, and at Ecole Poly technique in 1998-1999 to students of applied mathematics.

Theory of Multicomponent Fluids

Theory of Multicomponent Fluids
Author :
Publisher : Springer Science & Business Media
Total Pages : 311
Release :
ISBN-10 : 9780387226378
ISBN-13 : 0387226370
Rating : 4/5 (78 Downloads)

Synopsis Theory of Multicomponent Fluids by : Donald A. Drew

An exposition of the derivation and use of equations of motion for two-phase flow. The approach taken derives the equations of motion using ensemble averaging, and compares them with those derived from control volume methods. Closure for dispersed flows is discussed, and some fundamental solutions are given. The work focuses on the fundamental aspects of two-phase flow, and is intended to give the reader a background for understanding the dynamics as well as a system of equations that can be used in predictions of the behavior of dispersed two-phase flows. The exposition in terms of ensemble averaging is new, and combining it with modern continuum mechanics concepts makes this book unique. Intended for engineering, mathematics and physics researchers and advanced graduate students working in the field.

Aerosol Filtration

Aerosol Filtration
Author :
Publisher : Elsevier
Total Pages : 228
Release :
ISBN-10 : 9780081021163
ISBN-13 : 008102116X
Rating : 4/5 (63 Downloads)

Synopsis Aerosol Filtration by : Dominique Thomas

Filtration of aerosols is omnipresent in our daily lives, in areas as diverse as health, the protection of people and the environment, and air treatment inside buildings. However, the collection of particles within a filter media is not, contrary to popular belief, linked to a simple screen effect. The phenomena involved are much more complex and require the consideration of aerosol interactions, filter media and process conditions to select the best fiber filter for a given application. Aerosol Filtration, book for students, hygiene or process engineers, fibrous media manufacturers, designers, and filtration system suppliers or users addresses the filtration of aerosols in six chapters. These chapters cover physics and aerosol characterization, the fibrous media, and efficiency and filter clogging by solid or liquid aerosols, with special attention to the filtration of the nanoparticles. - Analyses the behavior of fibrous media against solid and liquid aerosols - Presents models of efficiency and pressure drop - Introduces computing elements for estimating the lifetime of filters - Provides guidance for designing filters and predicting their behavior over time

Simulation of Flow in Porous Media

Simulation of Flow in Porous Media
Author :
Publisher : Walter de Gruyter
Total Pages : 224
Release :
ISBN-10 : 9783110282245
ISBN-13 : 3110282240
Rating : 4/5 (45 Downloads)

Synopsis Simulation of Flow in Porous Media by : Peter Bastian

Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.

Multiphase Fluid Flow in Porous and Fractured Reservoirs

Multiphase Fluid Flow in Porous and Fractured Reservoirs
Author :
Publisher : Gulf Professional Publishing
Total Pages : 420
Release :
ISBN-10 : 9780128039113
ISBN-13 : 0128039116
Rating : 4/5 (13 Downloads)

Synopsis Multiphase Fluid Flow in Porous and Fractured Reservoirs by : Yu-Shu Wu

Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website

Fundamentals of Multiphase Flow

Fundamentals of Multiphase Flow
Author :
Publisher : Cambridge University Press
Total Pages : 376
Release :
ISBN-10 : 0521848040
ISBN-13 : 9780521848046
Rating : 4/5 (40 Downloads)

Synopsis Fundamentals of Multiphase Flow by : Christopher E. Brennen

Publisher Description

Multicomponent Mass Transfer

Multicomponent Mass Transfer
Author :
Publisher : John Wiley & Sons
Total Pages : 620
Release :
ISBN-10 : 0471574171
ISBN-13 : 9780471574170
Rating : 4/5 (71 Downloads)

Synopsis Multicomponent Mass Transfer by : Ross Taylor

Addresses the use of rigorous multicomponent mass transfer models for the simulation and design of process equipment. Deals with the basic equations of diffusion in multicomponent systems. Describes various models and estimations of rates of mass and energy transfer. Covers applications of multicomponent mass transfer models to process design. Includes appendices providing necessary mathematical background. Contains a large number of numerical examples worked out in detail.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media
Author :
Publisher : SIAM
Total Pages : 551
Release :
ISBN-10 : 9780898716061
ISBN-13 : 0898716063
Rating : 4/5 (61 Downloads)

Synopsis Computational Methods for Multiphase Flows in Porous Media by : Zhangxin Chen

This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Chemically Reacting Flow

Chemically Reacting Flow
Author :
Publisher : John Wiley & Sons
Total Pages : 1013
Release :
ISBN-10 : 9781119186298
ISBN-13 : 1119186293
Rating : 4/5 (98 Downloads)

Synopsis Chemically Reacting Flow by : Robert J. Kee

A guide to the theoretical underpinnings and practical applications of chemically reacting flow Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition combines fundamental concepts in fluid mechanics and physical chemistry while helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this Second Edition are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid-flow simulation approaches and transport within porous-media electrochemical systems. The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, allowing a great deal of flexibility in course curriculum design. • Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB • Provides the theoretical underpinnings and practical applications of chemically reacting flow • Emphasizes fundamentals, allowing the analyst to understand fundamental theory underlying reacting-flow simulations • Helps readers to acquire greater facility in the derivation and solution of conservation equations in new or unusual circumstances • Reorganized to facilitate use as a class text and now including a solutions manual for academic adopters Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields take utmost advantage of that powerful capability.

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 151
Release :
ISBN-10 : 9781681746753
ISBN-13 : 1681746751
Rating : 4/5 (53 Downloads)

Synopsis Lattice Boltzmann Modeling of Complex Flows for Engineering Applications by : Andrea Montessori

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.