Multi-scale 3D Virtual Histology Via Phase-contrast X-ray Tomography with Synchrotron Radiation

Multi-scale 3D Virtual Histology Via Phase-contrast X-ray Tomography with Synchrotron Radiation
Author :
Publisher : Universitätsverlag Göttingen
Total Pages : 148
Release :
ISBN-10 : 9783863956011
ISBN-13 : 386395601X
Rating : 4/5 (11 Downloads)

Synopsis Multi-scale 3D Virtual Histology Via Phase-contrast X-ray Tomography with Synchrotron Radiation by : Jasper Frohn

To this day, the standard method for investigating biological tissue with cellular resolution is the examination under a light microscope, first denoted as histology by Karl Meyer in 1819. Despite the enormous success and importance of histology, it has two major disadvantages. Firstly, the specimen must be physically cut into thin sections due to the limited penetrating power of optical light, and secondly, additional staining of the specimen is required to achieve sufficient image contrast. Both disadvantages can be overcome by the non-destructive method of propagation-based X-ray phase-contrast tomography. While the mechanism of phase-contrast provides sufficient image contrast to image single cells, a tomographic imaging scheme with penetrating X-rays allows for an undamaged sample by virtually slicing the reconstructed 3D sample volume. In this work, the holotomography setup of the synchrotron endstation „GINIX“ (The Göttingen Instrument for Nanoscale-Imaging with X-Rays) was extended to a multi-scale X-ray phase-contrast tomography setup suitable for 3D virtual histology by adding two acquisition schemes. Compared to the existing setup, the first additional scheme is a propagation-based microtomography setup, which enlarges the reconstructed 3D volumes by a factor of approx. 64 at a fraction of the acquisition time (ca. 2 min). The second additional scheme aims for higher resolutions. To this end, the X-ray waveguide illumination was combined with photon counting detector with a large field of view and a novel phase reconstruction scheme, which is based on iterative farfield phase retrieval without an „empty-beam correction“ in the detector plane.

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues
Author :
Publisher : Universitätsverlag Göttingen
Total Pages : 234
Release :
ISBN-10 : 9783863955366
ISBN-13 : 3863955366
Rating : 4/5 (66 Downloads)

Synopsis Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues by : Marius Reichardt

The cardiac function relies on an intricate molecular and cellular three-dimensional (3d) architecture of a complex, dense and co-dependent cellular network. Structural alterations of the cardiac structure can affect its essential function and lead to severe dysfunction of the organ. Cardiovascular diseases are the main cause of death worldwide with a rising incidence. However, it is not possible to give a generalized answer how the heart is formed. Up to now, cardiac structure as well as physiologic and disease-related tissue alterations of the tissue are mainly investigated by established 2d imaging methods such as optical microscopy or electron microscopy. This work presents a multiscale and multimodal X-ray imaging approach, which allows to probe the heart structure from the scale of entire intact murine hearts to the molecular organisation of the sarcomer structure. While the molecular structure of the actomyosin complex is probed by scanning X-ray diffraction, the 3d arrangement of the cellular network is investigated by propagation-based X-ray phase-contrast tomography. In this context, the concept of 3d virtual histology of cardiac tissue by X-ray phase-contrast tomography using laboratory sources as well as highly coherent synchrotron radiation is being further developed.

3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography

3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography
Author :
Publisher : Göttingen University Press
Total Pages : 286
Release :
ISBN-10 : 9783863953645
ISBN-13 : 3863953649
Rating : 4/5 (45 Downloads)

Synopsis 3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography by : Mareike Töpperwien

Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after aligning the individual sections, leading to a non-isotropic resolution within the tissue. X-ray computed tomography (CT) offers a promising alternative due to its potential resolution and large penetration depth which allows for non-invasive imaging of the sample's 3d density distribution. In classical CT, contrast formation is based on absorption of the x-rays as they pass through the sample. However, weakly absorbing samples like soft tissue from the central nervous system give nearly no contrast. By exploiting the much stronger phase shifts for contrast formation, which the sample induces in a (partially) coherent wavefront, it can be substantially increased. During free-space propagation behind the sample, these phase shifts are converted to a measurable intensity image by interference of the disturbed wave fronts. In this thesis, 3d virtual histology is performed by means of propagation-based x-ray phase-contrast tomography on tissue from the central nervous system of humans and mice. A combination of synchrotron-based and laboratory setups is used to visualize the 3d density distribution on varying lengths scales from the whole organ down to single cells. By comparing and optimizing different preparation techniques and phase-retrieval approaches, even sub-cellular resolution can be reached in mm-sized tissue blocks. The development of an automatic cell segmentation workflow provides access to the 3d cellular distribution within the tissue, enabling the quantification of the cellular arrangement and allowing for extensive statistical analysis based on several thousands to millions of cells. This paves the way for biomedical studies aimed at changes in cellular distribution, e.g., in the course of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease or ischemic stroke.

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1312411829
ISBN-13 :
Rating : 4/5 (29 Downloads)

Synopsis Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues by : Marius Reichardt

The cardiac function relies on an intricate molecular and cellular three-dimensional (3d) architecture of a complex, dense and co-dependent cellular network. Structural alterations of the cardiac structure can affect its essential function and lead to severe dysfunction of the organ. Cardiovascular diseases are the main cause of death worldwide with a rising incidence. However, it is not possible to give a generalized answer how the heart is formed. Up to now, cardiac structure as well as physiologic and disease-related tissue alterations of the tissue are mainly investigated by established 2d imaging methods such as optical microscopy or electron microscopy. This work presents a multiscale and multimodal X-ray imaging approach, which allows to probe the heart structure from the scale of entire intact murine hearts to the molecular organisation of the sarcomer structure. While the molecular structure of the actomyosin complex is probed by scanning X-ray diffraction, the 3d arrangement of the cellular network is investigated by propagation-based X-ray phase-contrast tomography. In this context, the concept of 3d virtual histology of cardiac tissue by X-ray phase-contrast tomography using laboratory sources as well as highly coherent synchrotron radiation is being further developed.

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues

Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:1368445173
ISBN-13 :
Rating : 4/5 (73 Downloads)

Synopsis Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues by :

The cardiac function relies on an intricate molecular and cellular three-dimensional (3d) architecture of a complex, dense and co-dependent cellular network. Structural alterations of the cardiac structure can affect its essential function and lead to severe dysfunction of the organ. Cardiovascular diseases are the main cause of death worldwide with a rising incidence.However, it is not possible to give a generalized answer how the heart is formed. Up to now, cardiac structure as well as physiologic and disease-related tissue alterations of the tissue are mainly investigated by established 2d imaging methods such as optical microscopy or electron microscopy.This work presents a multiscale and multimodal X-ray imaging approach, which allows to probe the heart structure from the scale of entire intact murine hearts to the molecular organisation of the sarcomer structure.While the molecular structure of the actomyosin complex is probed by scanning X-ray diffraction,the 3d arrangement of the cellular network is investigated by propagation-based X-ray phase-contrast tomography. In this context, the concept of 3d virtual histology of cardiac tissue by X-ray phase-contrast tomography using laboratory sources as well as highly coherent synchrotron radiation is being further developed.

Novel approaches in cardiac imaging

Novel approaches in cardiac imaging
Author :
Publisher : Frontiers Media SA
Total Pages : 230
Release :
ISBN-10 : 9782832527795
ISBN-13 : 2832527795
Rating : 4/5 (95 Downloads)

Synopsis Novel approaches in cardiac imaging by : Giuseppe Pannarale

Cone-beam x-ray phase-contrast tomography for the observation of single cells in whole organs

Cone-beam x-ray phase-contrast tomography for the observation of single cells in whole organs
Author :
Publisher : Göttingen University Press
Total Pages : 238
Release :
ISBN-10 : 9783863952518
ISBN-13 : 3863952510
Rating : 4/5 (18 Downloads)

Synopsis Cone-beam x-ray phase-contrast tomography for the observation of single cells in whole organs by : Martin Krenkel

X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent x-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 μm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet x-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.

Advancing the Characterization of Neuronal Cyto-Architecture by X-ray Phase-Contrast Tomography

Advancing the Characterization of Neuronal Cyto-Architecture by X-ray Phase-Contrast Tomography
Author :
Publisher : Universitätsverlag Göttingen
Total Pages : 276
Release :
ISBN-10 : 9783863955281
ISBN-13 : 3863955285
Rating : 4/5 (81 Downloads)

Synopsis Advancing the Characterization of Neuronal Cyto-Architecture by X-ray Phase-Contrast Tomography by : Marina Eckermann

To bring physiology and pathology of the human brain into better micro-anatomical and histological context, studies with different methodologies are required. Established techniques such as electron microscopy or histology show limitations in view of invasiveness, labor-intense and artifact-prone sample preparation, as well as an adequate ratio between resolution and volume throughput. For this reason, X-ray phase-contrast tomography (PC-CT) has been proposed as a three-dimensional non-destructive imaging technique, which requires less effort in sample preparation and can assess larger volumes. Furthermore, it offers quantitative electron density based contrast even for unstained tissue. Up to now, however, PC-CT studies fell short in number of samples, so that structural alterations caused by neurodegenerative diseases cannot be distinguished from physiological inter-subject variations. In this thesis, the scalability of PC-CT with respect to the required number of samples and resolution-to-volume-throughput is demonstrated, and the methodology is advanced with respect to data acquisition, processing and segmentation. In addition to the human cerebellum, cortex and hippocampus are studied. Concerning quantification and analysis of PC-CT data, this work introduces optimal transport analysis to obtain quantitative metrics of the cyto-architecture and to identify changes due to neurodegenerative diseases. For the case of Alzheimer’s disease, this workflow reveals a yet undescribed compactification of granular cells in the human hippocampus. This thesis also provides optimized configurations to study neural tissues with laboratory instrumentation, and – finally – provides new correlative imaging approaches, in particular with scanning electron microscopy.

Vertebrate Skeletal Histology and Paleohistology

Vertebrate Skeletal Histology and Paleohistology
Author :
Publisher : CRC Press
Total Pages : 838
Release :
ISBN-10 : 9781351189583
ISBN-13 : 1351189581
Rating : 4/5 (83 Downloads)

Synopsis Vertebrate Skeletal Histology and Paleohistology by : Vivian de Buffrénil

Vertebrate Skeletal Histology and Paleohistology summarizes decades of research into the biology and biological meaning of hard tissues, in both living and extinct vertebrates. In addition to outlining anatomical diversity, it provides fundamental phylogenetic and evolutionary contexts for interpretation. An international team of leading authorities review the impact of ontogeny, mechanics, and environment in relation to bone and dental tissues. Synthesizing current advances in the biological problems of growth, metabolism, evolution, ecology, and behavior, this comprehensive and authoritative volume is built upon a foundation of concepts and technology generated over the past fifty years.