Multi-Objective Optimization in Theory and Practice I: Classical Methods

Multi-Objective Optimization in Theory and Practice I: Classical Methods
Author :
Publisher : Bentham Science Publishers
Total Pages : 296
Release :
ISBN-10 : 9781681085685
ISBN-13 : 1681085682
Rating : 4/5 (85 Downloads)

Synopsis Multi-Objective Optimization in Theory and Practice I: Classical Methods by : Andre A. Keller

Multi-Objective Optimization in Theory and Practice is a traditional two-part approach to solving multi-objective optimization (MOO) problems namely the use of classical methods and evolutionary algorithms. This first book is devoted to classical methods including the extended simplex method by Zeleny and preference-based techniques. This part covers three main topics through nine chapters. The first topic focuses on the design of such MOO problems, their complexities including nonlinearities and uncertainties, and optimality theory. The second topic introduces the founding solving methods including the extended simplex method to linear MOO problems and weighting objective methods. The third topic deals with particular structures of MOO problems, such as mixed-integer programming, hierarchical programming, fuzzy logic programming, and bimatrix games. Multi-Objective Optimization in Theory and Practice is a user-friendly book with detailed, illustrated calculations, examples, test functions, and small-size applications in Mathematica® (among other mathematical packages) and from scholarly literature. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science, and mathematics degree programs.

Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms

Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms
Author :
Publisher : Bentham Science Publishers
Total Pages : 310
Release :
ISBN-10 : 9781681087061
ISBN-13 : 1681087065
Rating : 4/5 (61 Downloads)

Synopsis Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms by : André A. Keller

Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs.

Classical Methods

Classical Methods
Author :
Publisher :
Total Pages : 296
Release :
ISBN-10 : 1681085690
ISBN-13 : 9781681085692
Rating : 4/5 (90 Downloads)

Synopsis Classical Methods by : André A. Keller

Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. The first book presents the use of classical methods and preference-based techniques. The book explains classical methods for solving MOO problems through nine chapters. Topics covered in this part are the design of current MOO problems, the complexity of MOO problems with nonlinearities and uncertainties, the theory of Pareto optimality, the introductory problem solving methods (including Zeleny's simplex method), preference-based methods, structures of MOO problems (such as the mixed-integer programming, hierarchical optimization, fuzzy logic programming and bimatrix games). Multi-Objective Optimization in Theory and Practice is a user-friendly book with detailed, illustrated calculations, examples, test functions, and small-size applications in Mathematica® (among other packages) and from scholarly literature. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs.

Multi-Objective Combinatorial Optimization Problems and Solution Methods

Multi-Objective Combinatorial Optimization Problems and Solution Methods
Author :
Publisher : Academic Press
Total Pages : 316
Release :
ISBN-10 : 9780128238004
ISBN-13 : 0128238003
Rating : 4/5 (04 Downloads)

Synopsis Multi-Objective Combinatorial Optimization Problems and Solution Methods by : Mehdi Toloo

Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms

Multi-objective Optimization in Computational Intelligence

Multi-objective Optimization in Computational Intelligence
Author :
Publisher : IGI Global Snippet
Total Pages : 475
Release :
ISBN-10 : 9781599044989
ISBN-13 : 1599044986
Rating : 4/5 (89 Downloads)

Synopsis Multi-objective Optimization in Computational Intelligence by : Lam Thu Bui

Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.

Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 304
Release :
ISBN-10 : 9781461555636
ISBN-13 : 1461555639
Rating : 4/5 (36 Downloads)

Synopsis Nonlinear Multiobjective Optimization by : Kaisa Miettinen

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.

Non-Convex Multi-Objective Optimization

Non-Convex Multi-Objective Optimization
Author :
Publisher : Springer
Total Pages : 196
Release :
ISBN-10 : 9783319610078
ISBN-13 : 3319610074
Rating : 4/5 (78 Downloads)

Synopsis Non-Convex Multi-Objective Optimization by : Panos M. Pardalos

Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.

Multiobjective Optimization

Multiobjective Optimization
Author :
Publisher : Springer
Total Pages : 481
Release :
ISBN-10 : 9783540889083
ISBN-13 : 3540889086
Rating : 4/5 (83 Downloads)

Synopsis Multiobjective Optimization by : Jürgen Branke

Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.

Engineering Optimization

Engineering Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 832
Release :
ISBN-10 : 9781119454793
ISBN-13 : 1119454794
Rating : 4/5 (93 Downloads)

Synopsis Engineering Optimization by : Singiresu S. Rao

The revised and updated new edition of the popular optimization book for engineers The thoroughly revised and updated fifth edition of Engineering Optimization: Theory and Practice offers engineers a guide to the important optimization methods that are commonly used in a wide range of industries. The author—a noted expert on the topic—presents both the classical and most recent optimizations approaches. The book introduces the basic methods and includes information on more advanced principles and applications. The fifth edition presents four new chapters: Solution of Optimization Problems Using MATLAB; Metaheuristic Optimization Methods; Multi-Objective Optimization Methods; and Practical Implementation of Optimization. All of the book's topics are designed to be self-contained units with the concepts described in detail with derivations presented. The author puts the emphasis on computational aspects of optimization and includes design examples and problems representing different areas of engineering. Comprehensive in scope, the book contains solved examples, review questions and problems. This important book: Offers an updated edition of the classic work on optimization Includes approaches that are appropriate for all branches of engineering Contains numerous practical design and engineering examples Offers more than 140 illustrative examples, 500 plus references in the literature of engineering optimization, and more than 500 review questions and answers Demonstrates the use of MATLAB for solving different types of optimization problems using different techniques Written for students across all engineering disciplines, the revised edition of Engineering Optimization: Theory and Practice is the comprehensive book that covers the new and recent methods of optimization and reviews the principles and applications.

Engineering Optimization

Engineering Optimization
Author :
Publisher : New Age International
Total Pages : 936
Release :
ISBN-10 : 8122411495
ISBN-13 : 9788122411492
Rating : 4/5 (95 Downloads)

Synopsis Engineering Optimization by : S. S. Rao

A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.