Modular Representation Theory of Finite Groups

Modular Representation Theory of Finite Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 183
Release :
ISBN-10 : 9781447148326
ISBN-13 : 1447148320
Rating : 4/5 (26 Downloads)

Synopsis Modular Representation Theory of Finite Groups by : Peter Schneider

Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.

Modular Representation Theory

Modular Representation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 246
Release :
ISBN-10 : 9783540133896
ISBN-13 : 3540133895
Rating : 4/5 (96 Downloads)

Synopsis Modular Representation Theory by : D. Benson

This reprint of a 1983 Yale graduate course makes results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians. Following a review of background material, the lectures examine three closely connected topics in modular representation theory of finite groups: representations rings; almost split sequences and the Auslander-Reiten quiver; and complexity and cohomology varieties, which has become a major theme in representation theory.

Modular Representations of Finite Groups of Lie Type

Modular Representations of Finite Groups of Lie Type
Author :
Publisher : Cambridge University Press
Total Pages : 260
Release :
ISBN-10 : 0521674549
ISBN-13 : 9780521674546
Rating : 4/5 (49 Downloads)

Synopsis Modular Representations of Finite Groups of Lie Type by : James E. Humphreys

A comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory
Author :
Publisher : Cambridge University Press
Total Pages : 339
Release :
ISBN-10 : 9781107162396
ISBN-13 : 1107162394
Rating : 4/5 (96 Downloads)

Synopsis A Course in Finite Group Representation Theory by : Peter Webb

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

Representation Theory of Finite Groups

Representation Theory of Finite Groups
Author :
Publisher : Academic Press
Total Pages : 196
Release :
ISBN-10 : 9781483258218
ISBN-13 : 1483258211
Rating : 4/5 (18 Downloads)

Synopsis Representation Theory of Finite Groups by : Martin Burrow

Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.

Representations of Finite Groups

Representations of Finite Groups
Author :
Publisher : Elsevier
Total Pages : 443
Release :
ISBN-10 : 9781483269931
ISBN-13 : 1483269930
Rating : 4/5 (31 Downloads)

Synopsis Representations of Finite Groups by : Hirosi Nagao

Representations of Finite Groups provides an account of the fundamentals of ordinary and modular representations. This book discusses the fundamental theory of complex representations of finite groups. Organized into five chapters, this book begins with an overview of the basic facts about rings and modules. This text then provides the theory of algebras, including theories of simple algebras, Frobenius algebras, crossed products, and Schur indices with representation-theoretic versions of them. Other chapters include a survey of the fundamental theory of modular representations, with emphasis on Brauer characters. This book discusses as well the module-theoretic representation theory due to Green and includes some topics such as Burry–Carlson's theorem and Scott modules. The final chapter deals with the fundamental results of Brauer on blocks and Fong's theory of covering, and includes some approaches to them. This book is a valuable resource for readers who are interested in the various approaches to the study of the representations of groups.

Local Representation Theory

Local Representation Theory
Author :
Publisher : Cambridge University Press
Total Pages : 198
Release :
ISBN-10 : 052144926X
ISBN-13 : 9780521449267
Rating : 4/5 (6X Downloads)

Synopsis Local Representation Theory by : J. L. Alperin

The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.

Modular Representation Theory of Finite Groups

Modular Representation Theory of Finite Groups
Author :
Publisher : Walter de Gruyter
Total Pages : 284
Release :
ISBN-10 : 3110163675
ISBN-13 : 9783110163674
Rating : 4/5 (75 Downloads)

Synopsis Modular Representation Theory of Finite Groups by : Michael John Collins

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Representation Theory of Finite Groups: Algebra and Arithmetic

Representation Theory of Finite Groups: Algebra and Arithmetic
Author :
Publisher : American Mathematical Soc.
Total Pages : 226
Release :
ISBN-10 : 9780821832226
ISBN-13 : 0821832220
Rating : 4/5 (26 Downloads)

Synopsis Representation Theory of Finite Groups: Algebra and Arithmetic by : Steven H. Weintraub

``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.

Representation Theory

Representation Theory
Author :
Publisher : Springer
Total Pages : 720
Release :
ISBN-10 : 9783319079684
ISBN-13 : 3319079689
Rating : 4/5 (84 Downloads)

Synopsis Representation Theory by : Alexander Zimmermann

Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.