Modular Lie Algebras and their Representations

Modular Lie Algebras and their Representations
Author :
Publisher : CRC Press
Total Pages : 318
Release :
ISBN-10 : 9781000103397
ISBN-13 : 1000103390
Rating : 4/5 (97 Downloads)

Synopsis Modular Lie Algebras and their Representations by : H. Strade

This book presents an introduction to the structure and representation theory of modular Lie algebras over fields of positive characteristic. It introduces the beginner to the theory of modular Lie algebras and is meant to be a reference text for researchers.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 237
Release :
ISBN-10 : 9780521889698
ISBN-13 : 0521889693
Rating : 4/5 (98 Downloads)

Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Representation Theories and Algebraic Geometry

Representation Theories and Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 455
Release :
ISBN-10 : 9789401591317
ISBN-13 : 9401591318
Rating : 4/5 (17 Downloads)

Synopsis Representation Theories and Algebraic Geometry by : A. Broer

The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.

Representations of Algebraic Groups

Representations of Algebraic Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 594
Release :
ISBN-10 : 9780821843772
ISBN-13 : 082184377X
Rating : 4/5 (72 Downloads)

Synopsis Representations of Algebraic Groups by : Jens Carsten Jantzen

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Introduction to Lie Algebras

Introduction to Lie Algebras
Author :
Publisher : Springer Science & Business Media
Total Pages : 254
Release :
ISBN-10 : 9781846284908
ISBN-13 : 1846284902
Rating : 4/5 (08 Downloads)

Synopsis Introduction to Lie Algebras by : K. Erdmann

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Lie Algebras and Their Representations

Lie Algebras and Their Representations
Author :
Publisher : American Mathematical Soc.
Total Pages : 242
Release :
ISBN-10 : 9780821805121
ISBN-13 : 0821805126
Rating : 4/5 (21 Downloads)

Synopsis Lie Algebras and Their Representations by : Seok-Jin Kang

Over the past 30 years, exciting developments in diverse areas of the theory of Lie algebras and their representations have been observed. The symposium covered topics such as Lie algebras and combinatorics, crystal bases for quantum groups, quantum groups and solvable lattice models, and modular and infinite-dimensional Lie algebras. In this volume, readers will find several excellent expository articles and research papers containing many significant new results in this area.

Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory
Author :
Publisher : Springer
Total Pages : 545
Release :
ISBN-10 : 9783030021917
ISBN-13 : 3030021912
Rating : 4/5 (17 Downloads)

Synopsis Lie Groups, Geometry, and Representation Theory by : Victor G. Kac

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)

Modular Representations of Finite Groups of Lie Type

Modular Representations of Finite Groups of Lie Type
Author :
Publisher : Cambridge University Press
Total Pages : 260
Release :
ISBN-10 : 0521674549
ISBN-13 : 9780521674546
Rating : 4/5 (49 Downloads)

Synopsis Modular Representations of Finite Groups of Lie Type by : James E. Humphreys

A comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic.

Infinite Dimensional Lie Algebras

Infinite Dimensional Lie Algebras
Author :
Publisher : Springer Science & Business Media
Total Pages : 267
Release :
ISBN-10 : 9781475713824
ISBN-13 : 1475713827
Rating : 4/5 (24 Downloads)

Synopsis Infinite Dimensional Lie Algebras by : Victor G. Kac

Lie Algebras, Vertex Operator Algebras and Their Applications

Lie Algebras, Vertex Operator Algebras and Their Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 500
Release :
ISBN-10 : 9780821839867
ISBN-13 : 0821839861
Rating : 4/5 (67 Downloads)

Synopsis Lie Algebras, Vertex Operator Algebras and Their Applications by : Yi-Zhi Huang

The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.