Models And Methods For Quantum Condensation And Fluids

Models And Methods For Quantum Condensation And Fluids
Author :
Publisher : World Scientific
Total Pages : 361
Release :
ISBN-10 : 9789811266065
ISBN-13 : 9811266069
Rating : 4/5 (65 Downloads)

Synopsis Models And Methods For Quantum Condensation And Fluids by : Weizhu Bao

The Institute for Mathematical Sciences at the National University of Singapore hosted a thematic program on Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications from September 2019 to March 2020. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects six expanded lecture notes with self-contained tutorials. The coverage includes mathematical models and numerical methods for multidimensional solitons in linear and nonlinear potentials; Bose-Einstein condensation (BEC) with dipole-dipole interaction, higher order interaction and spin-orbit coupling; classical and quantum turbulence; and molecular dynamics process based on the first-principle in quantum chemistry.This volume serves to inspire graduate students and researchers who will embark into original research work in these fields.

Quantum Liquids

Quantum Liquids
Author :
Publisher : OUP Oxford
Total Pages : 405
Release :
ISBN-10 : 9780191037214
ISBN-13 : 0191037214
Rating : 4/5 (14 Downloads)

Synopsis Quantum Liquids by : Anthony James Leggett

Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large number of single particles or pairs of particles are forced to behave in exactly the same way, and explores their consequences in condensed matter systems. Eschewing advanced formal methods, the author uses simple concepts and arguments to account for the various qualitatively new phenomena which occur in Bose-condensed and Cooper-paired systems, including but not limited to the spectacular macroscopic phenomena of superconductivity and superfluidity. The physical systems discussed include liquid 4-He, the BEC alkali gases, "classical" superconductors, superfluid 3-He, "exotic" superconductors and the recently stabilized Fermi alkali gases. The book should be accessible to beginning graduate students in physics or advanced undergraduates.

Mathematical Models and Methods for Smart Materials

Mathematical Models and Methods for Smart Materials
Author :
Publisher : World Scientific
Total Pages : 396
Release :
ISBN-10 : 9789812382351
ISBN-13 : 9812382356
Rating : 4/5 (51 Downloads)

Synopsis Mathematical Models and Methods for Smart Materials by : Mauro Fabrizio

This book contains the papers presented at the conference on "Mathematical Models and Methods for Smart Materials, " held in Italy in 2001. The papers are divided into four parts: "Methods in Materials Science" deals mainly with mathematical techniques fo the investigation of physical systems, such as liquid crystals, materials with internal variables, amorphous materials, and thermoelastic materials. Also, techniques are exhibited for the analysis of stability and controllability of classical models of continuum mechanics and of dynamical systems. "Modelling of Smart Materials" is devoted to models of superfluids, superconductors, materials with memory, nonlinear elastic solids, and damaged materials. In the elaboration of the models, thermodynamic aspects play a central role in the characterization of the constitutive properties. "Well-Posedness in Materials with Memory" deals with existence, uniqueness and stability for the solution of problems, most often expressed by integrodifferential equations, which involve materials with fading memory. Also, attention is given to exponential decay in viscoelasticity, inverse problems in heat conduction with memory, and automatic control for parabolic equations. "Analytic Problems in Phase Transitions" discusses nonlinear partial differential equations associated with phase transitions, and hysteresis, possibly involving fading memory effects. Particular applications are developed for the phase-field model with memory, the Stefan problem with a Cattaneo type equation, the hysteresis in thermo-visco plasticity, and the solid-solid phase transition. Contents: Automatic Control Problems for Integrodifferential Parabolic Equations (C Cavaterra);Phase Relaxation Problems with Memory and Their Optimal Control (P Colli); Unified Dynamics of Particles and Photons (G Ferrarese); Solid-Solid Phase Transition in a Mechanical System (G Gilardi); KAM Methods for Nonautonomous

Multi-scale Phenomena in Complex Fluids

Multi-scale Phenomena in Complex Fluids
Author :
Publisher : World Scientific
Total Pages : 379
Release :
ISBN-10 : 9789814273251
ISBN-13 : 9814273252
Rating : 4/5 (51 Downloads)

Synopsis Multi-scale Phenomena in Complex Fluids by : Thomas Y. Hou

Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the ªrst two series of mini-courses from "Shanghai Summer School on Analysis and Numerics in Modern Sciences," which was held in 2004 and 2006 at Fudan University, Shanghai, China. This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.

Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 0817632549
ISBN-13 : 9780817632540
Rating : 4/5 (49 Downloads)

Synopsis Modeling and Computational Methods for Kinetic Equations by : Pierre Degond

In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

Quantum Gases

Quantum Gases
Author :
Publisher : World Scientific
Total Pages : 579
Release :
ISBN-10 : 9781848168121
ISBN-13 : 1848168128
Rating : 4/5 (21 Downloads)

Synopsis Quantum Gases by : Nick Proukakis

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.

Quantum Field Theory of Many-Body Systems

Quantum Field Theory of Many-Body Systems
Author :
Publisher : OUP Oxford
Total Pages : 520
Release :
ISBN-10 : 9780191523960
ISBN-13 : 0191523968
Rating : 4/5 (60 Downloads)

Synopsis Quantum Field Theory of Many-Body Systems by : Xiao-Gang Wen

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.

Introduction To Modern Methods Of Quantum Many-body Theory And Their Applications

Introduction To Modern Methods Of Quantum Many-body Theory And Their Applications
Author :
Publisher : World Scientific
Total Pages : 427
Release :
ISBN-10 : 9789814488136
ISBN-13 : 9814488135
Rating : 4/5 (36 Downloads)

Synopsis Introduction To Modern Methods Of Quantum Many-body Theory And Their Applications by : Adelchi Fabrocini

This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories — the methods of density functional theory, coupled cluster theory, and correlated basis functions — in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking lack of pedagogical reference literature in the field that allows researchers to acquire the requisite physical insight and technical skills. It should, therefore, provide useful reference material for a broad range of theoretical physicists in condensed-matter and nuclear theory.

Vortices in Bose-Einstein Condensates

Vortices in Bose-Einstein Condensates
Author :
Publisher : Springer Science & Business Media
Total Pages : 212
Release :
ISBN-10 : 9780817644925
ISBN-13 : 081764492X
Rating : 4/5 (25 Downloads)

Synopsis Vortices in Bose-Einstein Condensates by : Amandine Aftalion

This book provides an up-to-date approach to the diagnosis and management of endocarditis based on a critical analysis of the recent studies. It is the only up-to-date clinically oriented textbook available on this subject. The book is structured in a format that is easy to follow, clinically relevant and evidence based. The author has a special interest in the application of ultrasound in the study of cardiac structure and function.

Non-equilibrium Evaporation and Condensation Processes

Non-equilibrium Evaporation and Condensation Processes
Author :
Publisher : Springer Nature
Total Pages : 573
Release :
ISBN-10 : 9783030675530
ISBN-13 : 303067553X
Rating : 4/5 (30 Downloads)

Synopsis Non-equilibrium Evaporation and Condensation Processes by : Yuri B. Zudin

This present book is concerned with analytical approaches to statement and solution of problems of non-equilibrium evaporation and condensation. From analytical solutions, one is capable to understand and represent in a transparent form the principal laws, especially in the study of a new phenomenon or a process. This is why analytical methods are always employed on the first stage of mathematical modeling. Analytical solutions are also used as test models for validation of results numerical solutions. Non-equilibrium evaporation and condensation processes play an important role in a number of fundamental and applied problems: laser methods for processing of materials, depressurization of the protection cover of nuclear propulsion units, solar radiation on a comet surface, explosive boiling of superheated liquid, thermodynamic principles of superfluid helium. Analytical relations provide an adequate description of the essence of a physical phenomenon.