Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method
Author :
Publisher : CRC Press
Total Pages : 208
Release :
ISBN-10 : 9781482226027
ISBN-13 : 1482226022
Rating : 4/5 (27 Downloads)

Synopsis Modeling Shallow Water Flows Using the Discontinuous Galerkin Method by : Abdul A. Khan

This book introduces the discontinuous Galerkin (DG) method and its application to shallow water flows. The emphasis is to show details and modifications required to apply the scheme to real-world flow problems. It allows the readers to understand and develop robust and efficient computer simulation models that can be used to model flow, contaminant transport, and other factors in rivers and coastal environments. The book includes a large set of tests to illustrate the use of the model for a wide range of applications.

Space-time Hybridized Discontinuous Galerkin Methods for Shallow Water Equations

Space-time Hybridized Discontinuous Galerkin Methods for Shallow Water Equations
Author :
Publisher :
Total Pages : 230
Release :
ISBN-10 : OCLC:988034030
ISBN-13 :
Rating : 4/5 (30 Downloads)

Synopsis Space-time Hybridized Discontinuous Galerkin Methods for Shallow Water Equations by : Hamidreza Arabshahi

The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of the Navier-Stokes equations. They are utilized in a wide range of applications, from simulation of geophysical phenomena such as river/oceanic flows and avalanches to the study of hurricane simulation, storm surge modeling, and oil spills. As a hyperbolic system of equations, shocks may develop in finite time and therefore an appropriate numerical discretization of these equations needs to be developed. The purpose of this dissertation is to develop and implement a state of the art numerical method to accurately model these equations. Therefore, a well-balanced space-time hybridized discontinuous Galerkin method was developed for our purpose. The method was implemented and tested for several benchmark problems and very promising results were obtained. An a priori error estimate for the developed method was also obtained with an optimal rate of convergence in an appropriate norm. The estimate obtained is an extension of the existing a priori error estimates in the literature, first to the case of a system of shallow water equations, second to a hybridized mixed DG method, and third to an arbitrary degree of polynomial in time.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 468
Release :
ISBN-10 : 9783642597213
ISBN-13 : 3642597211
Rating : 4/5 (13 Downloads)

Synopsis Discontinuous Galerkin Methods by : Bernardo Cockburn

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Discontinuous Galerkin Method

Discontinuous Galerkin Method
Author :
Publisher : Springer
Total Pages : 575
Release :
ISBN-10 : 9783319192673
ISBN-13 : 3319192671
Rating : 4/5 (73 Downloads)

Synopsis Discontinuous Galerkin Method by : Vít Dolejší

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

Numerical Methods for Shallow-Water Flow

Numerical Methods for Shallow-Water Flow
Author :
Publisher : Springer Science & Business Media
Total Pages : 273
Release :
ISBN-10 : 9789401583541
ISBN-13 : 9401583544
Rating : 4/5 (41 Downloads)

Synopsis Numerical Methods for Shallow-Water Flow by : C.B. Vreugdenhil

A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.

Shock-Capturing Methods for Free-Surface Shallow Flows

Shock-Capturing Methods for Free-Surface Shallow Flows
Author :
Publisher :
Total Pages : 336
Release :
ISBN-10 : UOM:39015050786980
ISBN-13 :
Rating : 4/5 (80 Downloads)

Synopsis Shock-Capturing Methods for Free-Surface Shallow Flows by : E. F. Toro

The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.