Model Based Intermediate Level Computer Vision
Download Model Based Intermediate Level Computer Vision full books in PDF, epub, and Kindle. Read online free Model Based Intermediate Level Computer Vision ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gunnar Rutger Grape |
Publisher |
: |
Total Pages |
: 552 |
Release |
: 1973 |
ISBN-10 |
: STANFORD:36105025644274 |
ISBN-13 |
: |
Rating |
: 4/5 (74 Downloads) |
Synopsis Model Based (intermediate-level) Computer Vision by : Gunnar Rutger Grape
A system for computer vision is presented, which is based on two-dimensional prototypes, and which uses a hierarchy of features for mapping purposes. More specifically, one is dealing with scenes composed of planar faced, convex objects. Extensions to the general planar faced case are discussed. The visual input is provided by a TV-camera, and the problem is to interpret that input by computer, as a projection of a three-dimensional scene. The system proposed and demonstrated in this paper uses perspectively consistent two-dimensional models (prototypes) of views of three-dimensional objects, and interpretations of scene-representations are based on the establishment of mapping relationships from conglomerates of scene-elements (line-constellations) to prototypes templates. The prototypes are learned by the program through analysis of - and generalization on - ideal instances. (Modified author abstract).
Author |
: V Kishore Ayyadevara |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 805 |
Release |
: 2020-11-27 |
ISBN-10 |
: 9781839216534 |
ISBN-13 |
: 1839216530 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Modern Computer Vision with PyTorch by : V Kishore Ayyadevara
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Author |
: Simon J. D. Prince |
Publisher |
: Cambridge University Press |
Total Pages |
: 599 |
Release |
: 2012-06-18 |
ISBN-10 |
: 9781107011793 |
ISBN-13 |
: 1107011795 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Computer Vision by : Simon J. D. Prince
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Author |
: Mohamed Elgendy |
Publisher |
: Manning |
Total Pages |
: 478 |
Release |
: 2020-11-10 |
ISBN-10 |
: 9781617296192 |
ISBN-13 |
: 1617296198 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Deep Learning for Vision Systems by : Mohamed Elgendy
How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. Summary Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you’ll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology How much has computer vision advanced? One ride in a Tesla is the only answer you’ll need. Deep learning techniques have led to exciting breakthroughs in facial recognition, interactive simulations, and medical imaging, but nothing beats seeing a car respond to real-world stimuli while speeding down the highway. About the book How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. What's inside Image classification and object detection Advanced deep learning architectures Transfer learning and generative adversarial networks DeepDream and neural style transfer Visual embeddings and image search About the reader For intermediate Python programmers. About the author Mohamed Elgendy is the VP of Engineering at Rakuten. A seasoned AI expert, he has previously built and managed AI products at Amazon and Twilio. Table of Contents PART 1 - DEEP LEARNING FOUNDATION 1 Welcome to computer vision 2 Deep learning and neural networks 3 Convolutional neural networks 4 Structuring DL projects and hyperparameter tuning PART 2 - IMAGE CLASSIFICATION AND DETECTION 5 Advanced CNN architectures 6 Transfer learning 7 Object detection with R-CNN, SSD, and YOLO PART 3 - GENERATIVE MODELS AND VISUAL EMBEDDINGS 8 Generative adversarial networks (GANs) 9 DeepDream and neural style transfer 10 Visual embeddings
Author |
: E. R. Davies |
Publisher |
: Academic Press |
Total Pages |
: 584 |
Release |
: 2021-11-09 |
ISBN-10 |
: 9780128221495 |
ISBN-13 |
: 0128221496 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses
Author |
: Nicu Sebe |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2005-10-04 |
ISBN-10 |
: 9781402032752 |
ISBN-13 |
: 1402032757 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Machine Learning in Computer Vision by : Nicu Sebe
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Author |
: C.H. Dodd |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461330271 |
ISBN-13 |
: 1461330270 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Computer Vision and Sensor-Based Robots by : C.H. Dodd
The goal ofthe symposium, "Computer Vision and Sensor-Based Robots," held at the General Motors Research Laboratories on September 2S and 26, 1978, was to stimulate a closer interaction between people working in diverse areas and to discuss fundamental issues related to vision and robotics. This book contains the papers and general discussions of that symposium, the 22nd in an annual series covering different technical disciplines that are timely and of interest to General Motors as well as the technical community at large. The subject of this symposium remains timely because the cost of computer vision hardware continues to drop and there is increasing use of robots in manufacturing applications. Current industrial applications of computer vision range from simple systems that measure or compare to sophisticated systems for part location determination and inspection. Almost all industrial robots today work with known parts in known posi tions, and we are just now beginning to see the emergence of programmable automa tion in which the robot can react to its environment when stimulated by visual and force-touch sensor inputs. As discussed in the symposium, future advances will depend largely on research now underway in several key areas. Development of vision systems that can meet industrial speed and resolution requirements with a sense of depth and color is a necessary step.
Author |
: Martin A. Fischler |
Publisher |
: Elsevier |
Total Pages |
: 815 |
Release |
: 2014-06-28 |
ISBN-10 |
: 9780080515816 |
ISBN-13 |
: 0080515819 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Readings in Computer Vision by : Martin A. Fischler
The field of computer vision combines techniques from physics, mathematics, psychology, artificial intelligence, and computer science to examine how machines might construct meaningful descriptions of their surrounding environment. The editors of this volume, prominent researchers and leaders of the SRI International AI Center Perception Group, have selected sixty papers, most published since 1980, with the viewpoint that computer vision is concerned with solving seven basic problems: - Reconstructing 3D scenes from 2D images - Decomposing images into their component parts - Recognizing and assigning labels to scene objects - Deducing and describing relations among scene objects - Determining the nature of computer architectures that can support the visual function - Representing abstractions in the world of computer memory - Matching stored descriptions to image representation Each chapter of this volume addresses one of these problems through an introductory discussion, which identifies major ideas and summarizes approaches, and through reprints of key research papers. Two appendices on crucial assumptions in image interpretation and on parallel architectures for vision applications, a glossary of technical terms, and a comprehensive bibliography and index complete the volume.
Author |
: S.Z. Li |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 274 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9784431669333 |
ISBN-13 |
: 4431669337 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Markov Random Field Modeling in Computer Vision by : S.Z. Li
Markov random field (MRF) modeling provides a basis for the characterization of contextual constraints on visual interpretation and enables us to develop optimal vision algorithms systematically based on sound principles. This book presents a comprehensive study on using MRFs to solve computer vision problems, covering the following parts essential to the subject: introduction to fundamental theories, formulations of various vision models in the MRF framework, MRF parameter estimation, and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book is an excellent reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in the subject.
Author |
: Margarita N. Favorskaya |
Publisher |
: Springer |
Total Pages |
: 351 |
Release |
: 2017-10-25 |
ISBN-10 |
: 9783319675169 |
ISBN-13 |
: 3319675168 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Computer Vision in Control Systems-3 by : Margarita N. Favorskaya
The research book is a continuation of the authors’ previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing aerial and satellite image processing and related fields. Topics covered include novel tensor and wave models, a new comparative morphology scheme, warping compensation in video stabilization, image deblurring based on physical processes of blur impacts, and a rapid and robust core structural verification algorithm for feature extraction in images and videos, among others. All chapters focus on practical implementations. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, this book offers a timely guide.