Mixed Models
Download Mixed Models full books in PDF, epub, and Kindle. Read online free Mixed Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Andrzej Gałecki |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 558 |
Release |
: 2013-02-05 |
ISBN-10 |
: 9781461439004 |
ISBN-13 |
: 1461439000 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Linear Mixed-Effects Models Using R by : Andrzej Gałecki
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
Author |
: Brady T. West |
Publisher |
: CRC Press |
Total Pages |
: 376 |
Release |
: 2006-11-22 |
ISBN-10 |
: 9781420010435 |
ISBN-13 |
: 1420010433 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Linear Mixed Models by : Brady T. West
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Author |
: Walter W. Stroup |
Publisher |
: CRC Press |
Total Pages |
: 547 |
Release |
: 2016-04-19 |
ISBN-10 |
: 9781439815137 |
ISBN-13 |
: 1439815135 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Generalized Linear Mixed Models by : Walter W. Stroup
With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.
Author |
: Eugene Demidenko |
Publisher |
: John Wiley & Sons |
Total Pages |
: 768 |
Release |
: 2013-08-05 |
ISBN-10 |
: 9781118091579 |
ISBN-13 |
: 1118091574 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Mixed Models by : Eugene Demidenko
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
Author |
: José C. Pinheiro |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 538 |
Release |
: 2009-04-15 |
ISBN-10 |
: 9781441903174 |
ISBN-13 |
: 1441903178 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Mixed-Effects Models in S and S-PLUS by : José C. Pinheiro
R, linear models, random, fixed, data, analysis, fit.
Author |
: Jiming Jiang |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 269 |
Release |
: 2007-05-30 |
ISBN-10 |
: 9780387479460 |
ISBN-13 |
: 0387479465 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Linear and Generalized Linear Mixed Models and Their Applications by : Jiming Jiang
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.
Author |
: Brady T. West |
Publisher |
: CRC Press |
Total Pages |
: 442 |
Release |
: 2014-07-17 |
ISBN-10 |
: 9781466560994 |
ISBN-13 |
: 1466560991 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Linear Mixed Models by : Brady T. West
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM. New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggested approaches to writing simulations Use of the lmer() function in the lme4 R package New sections on fitting LMMs to complex sample survey data and Bayesian approaches to making inferences based on LMMs Updated graphical procedures in the software packages Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options More practical recommendations on using the software for analysis A new R package (WWGbook) that contains all of the data sets used in the examples Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.
Author |
: Eugene Demidenko |
Publisher |
: John Wiley & Sons |
Total Pages |
: 732 |
Release |
: 2005-01-28 |
ISBN-10 |
: 9780471726135 |
ISBN-13 |
: 0471726133 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Mixed Models by : Eugene Demidenko
A rigorous, self-contained examination of mixed model theory and application Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. Paying special attention to algorithms and their implementations, the book discusses: Modeling of complex clustered or longitudinal data Modeling data with multiple sources of variation Modeling biological variety and heterogeneity Mixed model as a compromise between the frequentist and Bayesian approaches Mixed model for the penalized log-likelihood Healthy Akaike Information Criterion (HAIC) How to cope with parameter multidimensionality How to solve ill-posed problems including image reconstruction problems Modeling of ensemble shapes and images Statistics of image processing Major results and points of discussion at the end of each chapter along with "Summary Points" sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.
Author |
: Lang Wu |
Publisher |
: CRC Press |
Total Pages |
: 431 |
Release |
: 2009-11-11 |
ISBN-10 |
: 1420074083 |
ISBN-13 |
: 9781420074086 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Author |
: Helen Brown |
Publisher |
: John Wiley & Sons |
Total Pages |
: 548 |
Release |
: 2014-12-12 |
ISBN-10 |
: 9781118778241 |
ISBN-13 |
: 1118778243 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Applied Mixed Models in Medicine by : Helen Brown
A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.