Minimal Surfaces. Part 1 - The Art
Author | : Jean Constant |
Publisher | : Hermay NM |
Total Pages | : 75 |
Release | : 2022-06-16 |
ISBN-10 | : |
ISBN-13 | : |
Rating | : 4/5 ( Downloads) |
A two-part book on the exploration of minimal surfaces. In mathematics, a minimal surface is a surface for which the mean curvature H is zero at all points. These elegant and complex shapes found in Nature from butterflies, beetles, or black holes are studied today in statistics, material sciences, and architecture. I explored this singular shape from the perspective of a visual artist for 52 weeks, January-December 2021. Inspiring in many ways, the esthetics of these complex equations borne in the minds of brilliant scientists add a unique all-encompassing perspective to shapes and objects also found in Nature. I structured the project into part 1 – the art inspired by the shape- and part 2 - the plain visualization of the equations that stand in their own right as a beautiful expression of a mathematical mind at work. I included the informal log I kept throughout the journey in both parts. In part 2, I added the mathematical background that helped me understand the particular shape I was working on. Both sides complement each other in helping us appreciate these unrivaled original expressions of our environment.