Microstructural Characterization of Irradiated Fe-Cu-Ni-P Model Steels

Microstructural Characterization of Irradiated Fe-Cu-Ni-P Model Steels
Author :
Publisher :
Total Pages : 12
Release :
ISBN-10 : UFL:31262071217417
ISBN-13 :
Rating : 4/5 (17 Downloads)

Synopsis Microstructural Characterization of Irradiated Fe-Cu-Ni-P Model Steels by :

The microstructure of Fe-Cu-Ni-P model pressure vessel steels after neutron irradiation and thermal aging has been characterized by atom probe field-ion microscopy and augmented by transmission electron microscopy. High densities of small, roughly spherical or disc shaped copper clusters/precipitates were observed in the neutron irradiated alloys that contained copper. Small spherical phosphorus clusters were observed in the irradiated copper-free alloys, and copper phosphides were observed in a high phosphorus Fe-Cu-Ni-P alloy. None of these clusters/precipitates were observed in the thermally aged materials. The increases in the tensile and yield strengths that were observed after neutron irradiation resulted from these clusters and other lattice defects.

Energy Research Abstracts

Energy Research Abstracts
Author :
Publisher :
Total Pages : 782
Release :
ISBN-10 : MSU:31293011519166
ISBN-13 :
Rating : 4/5 (66 Downloads)

Synopsis Energy Research Abstracts by :

Microstructural Characterization of Irradiated PWR Steels Using the Atom Probe Field-ion Microscope

Microstructural Characterization of Irradiated PWR Steels Using the Atom Probe Field-ion Microscope
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:727301819
ISBN-13 :
Rating : 4/5 (19 Downloads)

Synopsis Microstructural Characterization of Irradiated PWR Steels Using the Atom Probe Field-ion Microscope by :

Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries.

Effects of Radiation on Materials

Effects of Radiation on Materials
Author :
Publisher : ASTM International
Total Pages : 767
Release :
ISBN-10 : 9780803134775
ISBN-13 : 0803134770
Rating : 4/5 (75 Downloads)

Synopsis Effects of Radiation on Materials by : Martin L. Grossbeck

Metals Abstracts

Metals Abstracts
Author :
Publisher :
Total Pages : 1076
Release :
ISBN-10 : CORNELL:31924077935595
ISBN-13 :
Rating : 4/5 (95 Downloads)

Synopsis Metals Abstracts by :

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science
Author :
Publisher : Springer
Total Pages : 1014
Release :
ISBN-10 : 9781493934386
ISBN-13 : 1493934384
Rating : 4/5 (86 Downloads)

Synopsis Fundamentals of Radiation Materials Science by : GARY S. WAS

The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants

Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants
Author :
Publisher : Elsevier
Total Pages : 437
Release :
ISBN-10 : 9780857096470
ISBN-13 : 0857096478
Rating : 4/5 (70 Downloads)

Synopsis Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants by : Naoki Soneda

Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittlement, the main degradation mechanism affecting RPV steels, and mitigation routes for managing the RPV lifetime. Part I reviews RPV design and fabrication in different countries, with an emphasis on the materials required, their important properties, and manufacturing technologies. Part II then considers RVP embrittlement in operational nuclear power plants using different reactors. Chapters are devoted to embrittlement in light-water reactors, including WWER-type reactors and Magnox reactors. Finally, Part III presents techniques for studying embrittlement, including irradiation simulation techniques, microstructural characterisation techniques, and probabilistic fracture mechanics. Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants provides a thorough review of an issue that is central to the safety of nuclear power generation. The book includes contributions from an international team of experts, and will be a useful resource for nuclear plant operators and managers, relevant regulatory and safety bodies, nuclear metallurgists and other academics in this field - Discusses reactor pressure vessel (RPV) design and the effect irradiation embrittlement can have, the main degradation mechanism affecting RPVs - Examines embrittlement processes in RPVs in different reactor types, as well as techniques for studying RPV embrittlement

Understanding and Mitigating Ageing in Nuclear Power Plants

Understanding and Mitigating Ageing in Nuclear Power Plants
Author :
Publisher : Elsevier
Total Pages : 953
Release :
ISBN-10 : 9781845699956
ISBN-13 : 1845699955
Rating : 4/5 (56 Downloads)

Synopsis Understanding and Mitigating Ageing in Nuclear Power Plants by : Philip G Tipping

Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation. Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth. Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types. With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers. Introduces the reader to the role of nuclear power in the global energy mix Reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC) Examines topics including elimination of ageing effects, plant design, and the application of plant life management (PLiM) practices in a range of commercial nuclear reactor types