Methods of Microarray Data Analysis

Methods of Microarray Data Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 212
Release :
ISBN-10 : 0792375645
ISBN-13 : 9780792375647
Rating : 4/5 (45 Downloads)

Synopsis Methods of Microarray Data Analysis by : Simon M. Lin

Papers from CAMDA 2000, December 18-19, 2000, Duke University, Durham, NC, USA

A Practical Approach to Microarray Data Analysis

A Practical Approach to Microarray Data Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 382
Release :
ISBN-10 : 9780306478154
ISBN-13 : 0306478153
Rating : 4/5 (54 Downloads)

Synopsis A Practical Approach to Microarray Data Analysis by : Daniel P. Berrar

In the past several years, DNA microarray technology has attracted tremendous interest in both the scientific community and in industry. With its ability to simultaneously measure the activity and interactions of thousands of genes, this modern technology promises unprecedented new insights into mechanisms of living systems. Currently, the primary applications of microarrays include gene discovery, disease diagnosis and prognosis, drug discovery (pharmacogenomics), and toxicological research (toxicogenomics). Typical scientific tasks addressed by microarray experiments include the identification of coexpressed genes, discovery of sample or gene groups with similar expression patterns, identification of genes whose expression patterns are highly differentiating with respect to a set of discerned biological entities (e.g., tumor types), and the study of gene activity patterns under various stress conditions (e.g., chemical treatment). More recently, the discovery, modeling, and simulation of regulatory gene networks, and the mapping of expression data to metabolic pathways and chromosome locations have been added to the list of scientific tasks that are being tackled by microarray technology. Each scientific task corresponds to one or more so-called data analysis tasks. Different types of scientific questions require different sets of data analytical techniques. Broadly speaking, there are two classes of elementary data analysis tasks, predictive modeling and pattern-detection. Predictive modeling tasks are concerned with learning a classification or estimation function, whereas pattern-detection methods screen the available data for interesting, previously unknown regularities or relationships.

Statistical Analysis of Gene Expression Microarray Data

Statistical Analysis of Gene Expression Microarray Data
Author :
Publisher : CRC Press
Total Pages : 237
Release :
ISBN-10 : 9780203011232
ISBN-13 : 0203011236
Rating : 4/5 (32 Downloads)

Synopsis Statistical Analysis of Gene Expression Microarray Data by : Terry Speed

Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies

Microarray Data Analysis

Microarray Data Analysis
Author :
Publisher : Humana
Total Pages : 0
Release :
ISBN-10 : 1071618415
ISBN-13 : 9781071618417
Rating : 4/5 (15 Downloads)

Synopsis Microarray Data Analysis by : Giuseppe Agapito

This meticulous book explores the leading methodologies, techniques, and tools for microarray data analysis, given the difficulty of harnessing the enormous amount of data. The book includes examples and code in R, requiring only an introductory computer science understanding, and the structure and the presentation of the chapters make it suitable for use in bioinformatics courses. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of key detail and expert implementation advice that ensures successful results and reproducibility. Authoritative and practical, Microarray Data Analysis is an ideal guide for students or researchers who need to learn the main research topics and practitioners who continue to work with microarray datasets.

Analysis of Microarray Data

Analysis of Microarray Data
Author :
Publisher : John Wiley & Sons
Total Pages : 448
Release :
ISBN-10 : 3527318224
ISBN-13 : 9783527318223
Rating : 4/5 (24 Downloads)

Synopsis Analysis of Microarray Data by : Matthias Dehmer

This book is the first to focus on the application of mathematical networks for analyzing microarray data. This method goes well beyond the standard clustering methods traditionally used. From the contents: * Understanding and Preprocessing Microarray Data * Clustering of Microarray Data * Reconstruction of the Yeast Cell Cycle by Partial Correlations of Higher Order * Bilayer Verification Algorithm * Probabilistic Boolean Networks as Models for Gene Regulation * Estimating Transcriptional Regulatory Networks by a Bayesian Network * Analysis of Therapeutic Compound Effects * Statistical Methods for Inference of Genetic Networks and Regulatory Modules * Identification of Genetic Networks by Structural Equations * Predicting Functional Modules Using Microarray and Protein Interaction Data * Integrating Results from Literature Mining and Microarray Experiments to Infer Gene Networks The book is for both, scientists using the technique as well as those developing new analysis techniques.

Microarray Data Analysis

Microarray Data Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 569
Release :
ISBN-10 : 9781597453905
ISBN-13 : 1597453900
Rating : 4/5 (05 Downloads)

Synopsis Microarray Data Analysis by : Michael J. Korenberg

In this new volume, renowned authors contribute fascinating, cutting-edge insights into microarray data analysis. Information on an array of topics is included in this innovative book including in-depth insights into presentations of genomic signal processing. Also detailed is the use of tiling arrays for large genomes analysis. The protocols follow the successful Methods in Molecular BiologyTM series format, offering step-by-step instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding pitfalls.

Microarray Gene Expression Data Analysis

Microarray Gene Expression Data Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 176
Release :
ISBN-10 : 9781444311563
ISBN-13 : 1444311565
Rating : 4/5 (63 Downloads)

Synopsis Microarray Gene Expression Data Analysis by : Helen Causton

This guide covers aspects of designing microarray experiments and analysing the data generated, including information on some of the tools that are available from non-commercial sources. Concepts and principles underpinning gene expression analysis are emphasised and wherever possible, the mathematics has been simplified. The guide is intended for use by graduates and researchers in bioinformatics and the life sciences and is also suitable for statisticians who are interested in the approaches currently used to study gene expression. Microarrays are an automated way of carrying out thousands of experiments at once, and allows scientists to obtain huge amounts of information very quickly Short, concise text on this difficult topic area Clear illustrations throughout Written by well-known teachers in the subject Provides insight into how to analyse the data produced from microarrays

Analysis of Microarray Gene Expression Data

Analysis of Microarray Gene Expression Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 378
Release :
ISBN-10 : 9781402077883
ISBN-13 : 1402077882
Rating : 4/5 (83 Downloads)

Synopsis Analysis of Microarray Gene Expression Data by : Mei-Ling Ting Lee

After genomic sequencing, microarray technology has emerged as a widely used platform for genomic studies in the life sciences. Microarray technology provides a systematic way to survey DNA and RNA variation. With the abundance of data produced from microarray studies, however, the ultimate impact of the studies on biology will depend heavily on data mining and statistical analysis. The contribution of this book is to provide readers with an integrated presentation of various topics on analyzing microarray data.

Analyzing Microarray Gene Expression Data

Analyzing Microarray Gene Expression Data
Author :
Publisher : John Wiley & Sons
Total Pages : 366
Release :
ISBN-10 : 9780471726128
ISBN-13 : 0471726125
Rating : 4/5 (28 Downloads)

Synopsis Analyzing Microarray Gene Expression Data by : Geoffrey J. McLachlan

A multi-discipline, hands-on guide to microarray analysis of biological processes Analyzing Microarray Gene Expression Data provides a comprehensive review of available methodologies for the analysis of data derived from the latest DNA microarray technologies. Designed for biostatisticians entering the field of microarray analysis as well as biologists seeking to more effectively analyze their own experimental data, the text features a unique interdisciplinary approach and a combined academic and practical perspective that offers readers the most complete and applied coverage of the subject matter to date. Following a basic overview of the biological and technical principles behind microarray experimentation, the text provides a look at some of the most effective tools and procedures for achieving optimum reliability and reproducibility of research results, including: An in-depth account of the detection of genes that are differentially expressed across a number of classes of tissues Extensive coverage of both cluster analysis and discriminant analysis of microarray data and the growing applications of both methodologies A model-based approach to cluster analysis, with emphasis on the use of the EMMIX-GENE procedure for the clustering of tissue samples The latest data cleaning and normalization procedures The uses of microarray expression data for providing important prognostic information on the outcome of disease

Statistics and Data Analysis for Microarrays Using R and Bioconductor

Statistics and Data Analysis for Microarrays Using R and Bioconductor
Author :
Publisher : CRC Press
Total Pages : 1076
Release :
ISBN-10 : 9781439809761
ISBN-13 : 1439809763
Rating : 4/5 (61 Downloads)

Synopsis Statistics and Data Analysis for Microarrays Using R and Bioconductor by : Sorin Draghici

Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems. New to the Second EditionCompletely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying downloadable resource. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data.