Methods Of Algebraic Geometry In Control Theory Part Ii
Download Methods Of Algebraic Geometry In Control Theory Part Ii full books in PDF, epub, and Kindle. Read online free Methods Of Algebraic Geometry In Control Theory Part Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Peter Falb |
Publisher |
: Springer |
Total Pages |
: 211 |
Release |
: 2018-08-25 |
ISBN-10 |
: 9783319980263 |
ISBN-13 |
: 3319980262 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Methods of Algebraic Geometry in Control Theory: Part I by : Peter Falb
"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik
Author |
: Peter Falb |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 382 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781461215646 |
ISBN-13 |
: 1461215641 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Methods of Algebraic Geometry in Control Theory: Part II by : Peter Falb
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is quite satisfactory and natural for scalar systems, the study of multi-input, multi-output linear time invariant control systems requires projective algebraic geometry. Thus, this second volume deals with multi-variable linear systems and pro jective algebraic geometry. The results are deeper and less transparent, but are also quite essential to an understanding of linear control theory. A review of * From the Preface to Part 1. viii Preface the scalar theory is included along with a brief summary of affine algebraic geometry (Appendix E).
Author |
: Peter Falb |
Publisher |
: Birkhäuser |
Total Pages |
: 204 |
Release |
: 1990-07-01 |
ISBN-10 |
: 0817634541 |
ISBN-13 |
: 9780817634544 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Methods of Algebraic Geometry in Control Theory: Part I by : Peter Falb
Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic!) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).
Author |
: Eduardo D. Sontag |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 543 |
Release |
: 2013-11-21 |
ISBN-10 |
: 9781461205777 |
ISBN-13 |
: 1461205778 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Mathematical Control Theory by : Eduardo D. Sontag
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.
Author |
: Daniel J. Bates |
Publisher |
: SIAM |
Total Pages |
: 372 |
Release |
: 2013-11-08 |
ISBN-10 |
: 9781611972696 |
ISBN-13 |
: 1611972698 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Numerically Solving Polynomial Systems with Bertini by : Daniel J. Bates
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Author |
: P.J. Hilton |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 166 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461256519 |
ISBN-13 |
: 1461256518 |
Rating |
: 4/5 (19 Downloads) |
Synopsis New Directions in Applied Mathematics by : P.J. Hilton
It is close enough to the end of the century to make a guess as to what the Encyclopedia Britannica article on the history of mathematics will report in 2582: "We have said that the dominating theme of the Nineteenth Century was the development and application of the theory of functions of one variable. At the beginning of the Twentieth Century, mathematicians turned optimistically to the study off unctions of several variables. But wholly unexpected difficulties were met, new phenomena were discovered, and new fields of mathematics sprung up to study and master them. As a result, except where development of methods from earlier centuries continued, there was a recoil from applications. Most of the best mathematicians of the first two-thirds of the century devoted their efforts entirely to pure mathe matics. In the last third, however, the powerful methods devised by then for higher-dimensional problems were turned onto applications, and the tools of applied mathematics were drastically changed. By the end of the century, the temporary overemphasis on pure mathematics was completely gone and the traditional interconnections between pure mathematics and applications restored. "This century also saw the first primitive beginnings of the electronic calculator, whose development in the next century led to our modern methods of handling mathematics.
Author |
: Peter Falb |
Publisher |
: Birkhäuser |
Total Pages |
: 204 |
Release |
: 2012-06-12 |
ISBN-10 |
: 1468492233 |
ISBN-13 |
: 9781468492231 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Methods of Algebraic Geometry in Control Theory: Part I by : Peter Falb
Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic!) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).
Author |
: Laura Menini |
Publisher |
: World Scientific |
Total Pages |
: 615 |
Release |
: 2021-09-02 |
ISBN-10 |
: 9781800610477 |
ISBN-13 |
: 1800610475 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Algebraic Geometry For Robotics And Control Theory by : Laura Menini
The development of inexpensive and fast computers, coupled with the discovery of efficient algorithms for dealing with polynomial equations, has enabled exciting new applications of algebraic geometry and commutative algebra. Algebraic Geometry for Robotics and Control Theory shows how tools borrowed from these two fields can be efficiently employed to solve relevant problem arising in robotics and control theory.After a brief introduction to various algebraic objects and techniques, the book first covers a wide variety of topics concerning control theory, robotics, and their applications. Specifically this book shows how these computational and theoretical methods can be coupled with classical control techniques to: solve the inverse kinematics of robotic arms; design observers for nonlinear systems; solve systems of polynomial equalities and inequalities; plan the motion of mobile robots; analyze Boolean networks; solve (possibly, multi-objective) optimization problems; characterize the robustness of linear; time-invariant plants; and certify positivity of polynomials.
Author |
: Eduardo Bayro-Corrochano |
Publisher |
: Springer Nature |
Total Pages |
: 609 |
Release |
: 2020-06-19 |
ISBN-10 |
: 9783030349783 |
ISBN-13 |
: 3030349780 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Geometric Algebra Applications Vol. II by : Eduardo Bayro-Corrochano
This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.
Author |
: Grigoriy Blekherman |
Publisher |
: SIAM |
Total Pages |
: 487 |
Release |
: 2013-03-21 |
ISBN-10 |
: 9781611972283 |
ISBN-13 |
: 1611972280 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.