Metamaterial-Based Electromagnetic Radiations and Applications
Author | : Zhaoyun Duan |
Publisher | : Springer Nature |
Total Pages | : 261 |
Release | : |
ISBN-10 | : 9789819781089 |
ISBN-13 | : 9819781086 |
Rating | : 4/5 (89 Downloads) |
Read and Download All BOOK in PDF
Download Metamaterial Based Electromagnetic Radiations And Applications full books in PDF, epub, and Kindle. Read online free Metamaterial Based Electromagnetic Radiations And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author | : Zhaoyun Duan |
Publisher | : Springer Nature |
Total Pages | : 261 |
Release | : |
ISBN-10 | : 9789819781089 |
ISBN-13 | : 9819781086 |
Rating | : 4/5 (89 Downloads) |
Author | : Douglas H. Werner |
Publisher | : Springer Science & Business Media |
Total Pages | : 500 |
Release | : 2013-07-19 |
ISBN-10 | : 9781447149965 |
ISBN-13 | : 1447149963 |
Rating | : 4/5 (65 Downloads) |
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Author | : Willie J. Padilla |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 199 |
Release | : 2022-01-24 |
ISBN-10 | : 9781636392608 |
ISBN-13 | : 1636392601 |
Rating | : 4/5 (08 Downloads) |
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Author | : Josep Canet-Ferrer |
Publisher | : BoD – Books on Demand |
Total Pages | : 204 |
Release | : 2019-01-03 |
ISBN-10 | : 9781789848427 |
ISBN-13 | : 1789848423 |
Rating | : 4/5 (27 Downloads) |
Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field. In the second part, the discussion is extended to the different spectral ranges focusing on the strategies for enabling the reconfigurability of metadevices. Given the increasing interest in THz applications, these can be found in the third part.
Author | : Pankaj K. Choudhury |
Publisher | : CRC Press |
Total Pages | : 408 |
Release | : 2021-11-05 |
ISBN-10 | : 9781000469295 |
ISBN-13 | : 1000469298 |
Rating | : 4/5 (95 Downloads) |
Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book
Author | : Nader Engheta |
Publisher | : John Wiley & Sons |
Total Pages | : 438 |
Release | : 2006-06-23 |
ISBN-10 | : 9780471784180 |
ISBN-13 | : 0471784184 |
Rating | : 4/5 (80 Downloads) |
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
Author | : Karim Achouri |
Publisher | : John Wiley & Sons |
Total Pages | : 226 |
Release | : 2021-05-11 |
ISBN-10 | : 9781119525165 |
ISBN-13 | : 1119525160 |
Rating | : 4/5 (65 Downloads) |
Discover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate its material parameters to its physical structures. The authors provide examples to illustrate all the concepts discussed in the book to improve and simplify reader understanding. Electromagnetic Metasurfaces concludes with an incisive discussion of the likely future directions and research opportunities in the field. Readers will also benefit from the inclusion of: A thorough introduction to metamaterials, the concept of metasurfaces, and metasurface precursors An exploration of electromagnetic modeling and theory, including metasurfaces as zero-thickness sheets and bianisotropic susceptibility tensors A practical discussion of susceptibility synthesis, including four-parameters synthesis, more than four-parameters synthesis, and the addition of susceptibility components A concise treatment of scattered-field analysis, including approximate analytical methods, and finite-difference frequency-domain techniques Perfect for researchers in metamaterial sciences and engineers working with microwave, THz, and optical technologies, Electromagnetic Metasurfaces: Theory and Applications will also earn a place in the libraries of graduate and undergraduate students in physics and electrical engineering.
Author | : Igor I Smolyaninov |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 81 |
Release | : 2018-03-23 |
ISBN-10 | : 9781681745657 |
ISBN-13 | : 1681745658 |
Rating | : 4/5 (57 Downloads) |
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
Author | : Said Zouhdi |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2008-12-16 |
ISBN-10 | : 9781402094071 |
ISBN-13 | : 1402094078 |
Rating | : 4/5 (71 Downloads) |
Metamaterials and plasmonics are cross-disciplinary fields that are emerging into the mainstream of many scientific areas. Examples of scientific and technical fields which are concerned are electrical engineering, micro- and nanotechnology, microwave engineering, optics, optoelectronics, and semiconductor technologies. In plasmonics, the interplay between propagating electromagnetic waves and free-electron oscillations in materials are exploited to create new components and applications. On the other hand, metamaterials refer to artificial composites in which small artificial elements, through their collective interaction, creates a desired and unexpected macroscopic response function that is not present in the constituent materials. This book charts the state of the art of these fields. In May 2008, world-leading experts in metamaterials and plasmonics gathered into a NATO Advanced Research Workshop in Marrakech, Morocco. The present book contains extended versions of 22 of the presentations held in the workshop, covering the general aspects of the field, as well as design and modelling questions of plasmonics and metamaterials, fabrication issues, and applications like absorbers and antennas.
Author | : Kazuaki Sakoda |
Publisher | : Springer Nature |
Total Pages | : 278 |
Release | : 2019-09-09 |
ISBN-10 | : 9789811386497 |
ISBN-13 | : 9811386498 |
Rating | : 4/5 (97 Downloads) |
This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.